2025 Vol. 45, No. 2
Article Contents

ZHANG Jiaxuan, GUO Lingli, ZHANG Jingjing, TAO Wei, ZHAO Shujuan, WANG Guangzeng, LI Sanzhong. Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 79-97. doi: 10.16562/j.cnki.0256-1492.2024020101
Citation: ZHANG Jiaxuan, GUO Lingli, ZHANG Jingjing, TAO Wei, ZHAO Shujuan, WANG Guangzeng, LI Sanzhong. Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 79-97. doi: 10.16562/j.cnki.0256-1492.2024020101

Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study

More Information
  • The strike-slip movement of the Red River Fault Zone (RRFZ) affected the formation of the basin in the western part of the South China Sea (SCS) to a certain degree. To characterize the tectonic features of the RRFZ during the uplift interval of the Tibetan Plateau and analyze the relationship between the strike-slip in RRFZ and the basins, especially Yinggehai Basin and Zhongjiannan Basin in the western SCS, sandbox analogue modelling experiments were performed in the context of the India-Eurasia collision. Results indicate that the prototypes of the two basins are controlled by the NW-oriented shear stresses generated by the strike-slip movement of the RRFZ, and the SN-oriented tensional stresses with the SCS opening up and the basin sizes expanding. During the early formation stage of the two basins, the displacement due to the strike-slipping was absorbed by the boundary faults and internal faults of the basins, thus controlling the evolution of the basins during the stage from 35 to 23 Ma.

  • 加载中
  • [1] 张连生, 钟大赉. 从红河剪切带走滑运动看东亚大陆新生代构造[J]. 地质科学, 1996, 31(4):327-341

    Google Scholar

    ZHANG Liansheng, ZHONG Dalai. The Red River strike-slip shear zone and Cenozoic tectonics of East Asia Continent[J]. Chinese Journal of Geology, 1996, 31(4):327-341.]

    Google Scholar

    [2] Molnar P, Fitch T J, Wu F T. Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia[J]. Earth and Planetary Science Letters, 1973, 19(2):101-112. doi: 10.1016/0012-821X(73)90104-0

    CrossRef Google Scholar

    [3] Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 1984, 307(5946):17-22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [4] Chang C F, Chen N S, Coward M P, et al. Preliminary conclusions of the Royal Society and Academia Sinica 1985 Geotraverse of Tibet[J]. Nature, 1986, 323(6088):501-507. doi: 10.1038/323501a0

    CrossRef Google Scholar

    [5] Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: an experimental approach[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B12):15085-15117. doi: 10.1029/JB093iB12p15085

    CrossRef Google Scholar

    [6] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264(5584):319-324. doi: 10.1038/264319a0

    CrossRef Google Scholar

    [7] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    CrossRef Google Scholar

    [8] Armijo R, Tapponnier P, Han T L. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B3):2787-2838. doi: 10.1029/JB094iB03p02787

    CrossRef Google Scholar

    [9] Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20):2905-2930. doi: 10.1029/JB082i020p02905

    CrossRef Google Scholar

    [10] Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B7):3425-3459. doi: 10.1029/JB084iB07p03425

    CrossRef Google Scholar

    [11] Huchon P, Le Pichon X, Rangin C. Indochina Peninsula and the collision of India and Eurasia[J]. Geology, 1994, 22(1):27-30. doi: 10.1130/0091-7613(1994)022<0027:IPATCO>2.3.CO;2

    CrossRef Google Scholar

    [12] Li L, Lu S P, Gao R, et al. Seismic reflection imaging of a deep-penetrating red river fault in the Yinggehai Basin, northwest of the South China Sea[J]. Geophysical Research Letters, 2023, 50(19):e2023GL104598. doi: 10.1029/2023GL104598

    CrossRef Google Scholar

    [13] Zhou D, Ru K, Chen H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1-4):161-177. doi: 10.1016/0040-1951(95)00018-6

    CrossRef Google Scholar

    [14] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of southeast Asia[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B4):6299-6328. doi: 10.1029/92JB02280

    CrossRef Google Scholar

    [15] Gilley L D, Harrison T M, Leloup P H, et al. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B2):2127.

    Google Scholar

    [16] Zhong D L, Tapponnier P, Wu H W, et al. Large-scale strike slip fault: The major structure of intracontinental deformation after collision[J]. Chinese Science Bulletin, 1990, 35(4):304-309.

    Google Scholar

    [17] Wang P L, Lo C H, Lee T Y, et al. Thermochronological evidence for the movement of the Ailao Shan–Red River shear zone: A perspective from Vietnam[J]. Geology, 1998, 26(10):887-890. doi: 10.1130/0091-7613(1998)026<0887:TEFTMO>2.3.CO;2

    CrossRef Google Scholar

    [18] Zhang L S, Schärer U. Age and origin of magmatism along the Cenozoic Red River shear belt, China[J]. Contributions to Mineralogy and Petrology, 1999, 134(1):67-85. doi: 10.1007/s004100050469

    CrossRef Google Scholar

    [19] Schärer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: the Red River belt, China[J]. Earth and Planetary Science Letters, 1994, 126(4):379-397. doi: 10.1016/0012-821X(94)90119-8

    CrossRef Google Scholar

    [20] 曹淑云, 刘俊来, Leiss B, 等. 哀牢山-红河剪切带左行走滑作用起始时间约束: 点苍山高温糜棱岩的显微构造与热年代学证据[J]. 地质学报, 2009, 83(10):1388-1400 doi: 10.3321/j.issn:0001-5717.2009.10.003

    CrossRef Google Scholar

    CAO Shuyun, LIU Junlai, Leiss B, et al. Timing of initiation of left-lateral slip along the Ailao Shan-Red River shear zone: microstructural, texture and Thermochronological evidence from high temperature Mylonites in Diancang Shan, SW China[J]. Acta Geologica Sinica, 2009, 83(10):1388-1400.] doi: 10.3321/j.issn:0001-5717.2009.10.003

    CrossRef Google Scholar

    [21] 孙桂华, 彭学超, 黄永健. 红河断裂带莺歌海段地质构造特征[J]. 地质学报, 2013, 87(2):154-166 doi: 10.3969/j.issn.0001-5717.2013.02.002

    CrossRef Google Scholar

    SUN Guihua, PENG Xuechao, HUANG Yongjian. Geological structure characteristics of Red River Fault Zone in the Yinggehai Basin[J]. Acta Geologica Sinica, 2013, 87(2):154-166.] doi: 10.3969/j.issn.0001-5717.2013.02.002

    CrossRef Google Scholar

    [22] Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. GSA Bulletin, 1984, 95(6):686-700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2

    CrossRef Google Scholar

    [23] Rangin C, Klein M, Roques D, et al. The Red River fault system in the Tonkin Gulf, Vietnam[J]. Tectonophysics, 1995, 243(3-4):209-222. doi: 10.1016/0040-1951(94)00207-P

    CrossRef Google Scholar

    [24] Replumaz A, Lacassin R, Tapponnier P, et al. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China)[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B1):819-836. doi: 10.1029/2000JB900135

    CrossRef Google Scholar

    [25] Sun Z, Zhou D, Zhong Z H, et al. Experimental evidence for the dynamics of the formation of the Yinggehai Basin, NW South China Sea[J]. Tectonophysics, 2003, 372(1-2):41-58. doi: 10.1016/S0040-1951(03)00230-0

    CrossRef Google Scholar

    [26] Schoenbohm L M, Burchfiel B C, Chen L Z, et al. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. GSA Bulletin, 2006, 118(5-6):672-688. doi: 10.1130/B25816.1

    CrossRef Google Scholar

    [27] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    CrossRef Google Scholar

    [28] Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan—Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1-4):3-10,13-84. doi: 10.1016/0040-1951(95)00070-4

    CrossRef Google Scholar

    [29] 任纪舜, 金小赤. 红河断裂的新观察[J]. 地质论评, 1996, 42(5):439-442 doi: 10.3321/j.issn:0371-5736.1996.05.010

    CrossRef Google Scholar

    REN Jishun, JIN Xiaochi. New observations of the Red River Fault[J]. Geological Review, 1996, 42(5):439-442.] doi: 10.3321/j.issn:0371-5736.1996.05.010

    CrossRef Google Scholar

    [30] Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan—Red River shear zone, SE Asia[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B4):6683-6732. doi: 10.1029/2000JB900322

    CrossRef Google Scholar

    [31] Leloup P H, Tapponnier P, Lacassin R, et al. Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia Journal, Vol. 163, 2006, 1025–1036[J]. Journal of the Geological Society, 2007, 164(6):1253-1260. doi: 10.1144/0016-76492007-065

    CrossRef Google Scholar

    [32] Mazur S, Green C, Stewart M G, et al. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions[J]. Tectonics, 2012, 31(5):TC5008.

    Google Scholar

    [33] 姚伯初, 曾维军, 陈艺中, 等. 南海西沙海槽, 一条古缝合线[J]. 海洋地质与第四纪地质, 1994, 14(1):1-10

    Google Scholar

    YAO Bochu, ZENG Weijun, CHEN Yizhong, et al. Xisha trough of South China Sea—an ancient suture[J]. Marine Geology & Quaternary Geology, 1994, 14(1):1-10.]

    Google Scholar

    [34] 刘海龄, 姚永坚, 沈宝云, 等. 南海西缘结合带的贯通性[J]. 地球科学——中国地质大学学报, 2015, 40(4):615-632 doi: 10.3799/dqkx.2015.049

    CrossRef Google Scholar

    LIU Hailing, YAO Yongjian, SHEN Baoyun, et al. On linkage of western boundary faults of the South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4):615-632.] doi: 10.3799/dqkx.2015.049

    CrossRef Google Scholar

    [35] 万玲, 姚伯初, 吴能友. 红河断裂带人海后的延伸及其构造意义[J]. 南海地质研究, 2000(12):22-32

    Google Scholar

    WAN Ling, YAO Bochu, WU Nengyou. The extending of Honghe Faults in the South China Sea and its tectonic significance[J]. Geological Research of South China Sea, 2000(12):22-32.]

    Google Scholar

    [36] Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6257):431-437. doi: 10.1038/343431a0

    CrossRef Google Scholar

    [37] 姚伯初, 万玲, 吴能友. 大南海地区新生代板块构造活动[J]. 中国地质, 2004, 31(2):113-122 doi: 10.3969/j.issn.1000-3657.2004.02.001

    CrossRef Google Scholar

    YAO Bochu, WAN Ling, WU Nengyou. Cenozoic plate tectonic activities in the Great South China Sea area[J]. Geology in China, 2004, 31(2):113-122.] doi: 10.3969/j.issn.1000-3657.2004.02.001

    CrossRef Google Scholar

    [38] 刘宝明, 夏斌, 李绪宣, 等. 红河断裂带东南的延伸及其构造演化意义[J]. 中国科学 D辑 :地球科学, 2006, 36(10): 914-924

    Google Scholar

    LIU Baoming, XIA Bing, LI Xuxuan, et al. Southeastern extension of the Red River fault zone (RRFZ) and its tectonic evolution significance in western South China Sea[J]. Science in China Series D: Earth Sciences, 2006, 49(8): 839-850.]

    Google Scholar

    [39] 安慧婷, 李三忠, 索艳慧, 等. 南海西部新生代控盆断裂及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6):95-111

    Google Scholar

    AN Huiting, LI Sanzhong, SUO Yanhui, et al. Basin-controlling faults and Formation mechanism of the Cenozoic Basin groups in the western South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6):95-111.]

    Google Scholar

    [40] 雷超. 南海北部莺歌海—琼东南盆地新生代构造变形格局及其演化过程分析[D]. 中国地质大学博士学位论文, 2012

    Google Scholar

    LEI Chao. Structure and evolution of Yinggehai and Qiongdongnan Basins, South China Sea: implications for Cenozoic Tectonics in Southeast Asia. Doctor Dissertation of China University of Geosciences, 2012.

    Google Scholar

    [41] 钟志洪, 王良书, 夏斌, 等. 莺歌海盆地成因及其大地构造意义[J]. 地质学报, 2004, 78(3):302-309 doi: 10.3321/j.issn:0001-5717.2004.03.003

    CrossRef Google Scholar

    ZHONG Zhihong, WANG Liangshu, XIA Bin, et al. The dynamics of Yinggehai Basin Formation and its tectonic significance[J]. Acta Geologica Sinica, 2004, 78(3):302-309.] doi: 10.3321/j.issn:0001-5717.2004.03.003

    CrossRef Google Scholar

    [42] 王伟平, 姚永坚, 蔡周荣, 等. 中建南盆地后扩张期T5和T3不整合面的发育特征及对南海科学钻探的意义[J]. 地质学报, 2022, 96(8):2822-2832

    Google Scholar

    WANG Weiping, YAO Yongjian, CAI Zhourong, et al. Characteristics of unconformity T5 and T3 in the Zhongjiannan Basin and their significance for scientific drilling in the South China Sea during the post-spreading Period[J]. Acta Geologica Sinica, 2022, 96(8):2822-2832.]

    Google Scholar

    [43] 高红芳, 陈玲. 南海西部中建南盆地构造格架及形成机制分析[J]. 石油与天然气地质, 2006, 27(4):512-516 doi: 10.3321/j.issn:0253-9985.2006.04.011

    CrossRef Google Scholar

    GAO Hongfang, CHEN Ling. An analysis of structural framework and Formation mechanism of Zhongjiannan Basin in the west of South China Sea[J]. Oil & Gas Geology, 2006, 27(4):512-516.] doi: 10.3321/j.issn:0253-9985.2006.04.011

    CrossRef Google Scholar

    [44] 陈玲. 中建南盆地局部构造特征[J]. 海洋地质与第四纪地质, 2008, 28(5):69-75

    Google Scholar

    CHEN Ling. Analysis of local tectonic characters of Zhongjiannan Basin in South China Sea[J]. Marine Geology & Quaternary Geology, 2008, 28(5):69-75.]

    Google Scholar

    [45] 高红芳, 王衍棠, 郭丽华. 南海西部中建南盆地油气地质条件和勘探前景分析[J]. 中国地质, 2007, 34(4):592-598 doi: 10.3969/j.issn.1000-3657.2007.04.006

    CrossRef Google Scholar

    GAO Hongfang, WANG Yantang, GUO Lihua. Petroleum geological conditions and prospects in the Zhongjiannan Basin in the western South China Sea[J]. Geology in China, 2007, 34(4):592-598.] doi: 10.3969/j.issn.1000-3657.2007.04.006

    CrossRef Google Scholar

    [46] Liu H, Luan X W, Guo L L, et al. Fault distribution and Formation mechanism of a magnetic quiet zone in the northern South China Sea[J]. Geological Journal, 2016, 51(S1):331-345. doi: 10.1002/gj.2844

    CrossRef Google Scholar

    [47] Dooley T, McClay K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826.

    Google Scholar

    [48] Sims D, Ferrill D A, Stamatakos J A. Role of a ductile décollement in the development of pull-apart basins: Experimental results and natural examples[J]. Journal of Structural Geology, 1999, 21(5):533-554. doi: 10.1016/S0191-8141(99)00010-3

    CrossRef Google Scholar

    [49] Sun Z, Zhou D, Zhong Z H, et al. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling[J]. Science in China Series D:Earth Sciences, 2006, 49(10):1053-1069. doi: 10.1007/s11430-006-1053-6

    CrossRef Google Scholar

    [50] Wu J E, McClay K, Whitehouse P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007

    CrossRef Google Scholar

    [51] Ding W W, Li J B. Propagated rifting in the Southwest Sub-Basin, South China Sea: insights from analogue modelling[J]. Journal of Geodynamics, 2016, 100:71-86. doi: 10.1016/j.jog.2016.02.004

    CrossRef Google Scholar

    [52] 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6):55-78

    Google Scholar

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basin dynamics and Basin groups of the South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6):55-78.]

    Google Scholar

    [53] Taylor B, Hayes D E. The tectonic evolution of the South China Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington: American Geophysical Union, 1980: 89-104.

    Google Scholar

    [54] Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192:91-137. doi: 10.1016/j.earscirev.2019.03.003

    CrossRef Google Scholar

    [55] Hui G G, Li S Z, Guo L L, et al. A review of geohazards on the northern continental margin of the South China Sea[J]. Earth-Science Reviews, 2021, 220:103733. doi: 10.1016/j.earscirev.2021.103733

    CrossRef Google Scholar

    [56] Wang P C, Li S Z, Suo Y H, et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: a synthesis[J]. Earth-Science Reviews, 2021, 216:103522. doi: 10.1016/j.earscirev.2021.103522

    CrossRef Google Scholar

    [57] Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1-4):85-138. doi: 10.1016/0040-1951(95)00023-2

    CrossRef Google Scholar

    [58] 徐旭辉, 高长林, 黄泽光, 等. 中国盆地形成的三大活动构造历史阶段[J]. 石油与天然气地质, 2005, 26(2):155-162 doi: 10.3321/j.issn:0253-9985.2005.02.006

    CrossRef Google Scholar

    XU Xuhui, GAO Changlin, HUANG Zeguang, et al. Three stages of tectonic movements in Formation of petroliferous basins in China[J]. Oil & Gas Geology, 2005, 26(2):155-162.] doi: 10.3321/j.issn:0253-9985.2005.02.006

    CrossRef Google Scholar

    [59] Pigott J D, Ru K. Basin superposition on the northern margin of the South China Sea[J]. Tectonophysics, 1994, 235(1-2):27-50. doi: 10.1016/0040-1951(94)90015-9

    CrossRef Google Scholar

    [60] Morley C K. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics, 2002, 347(4):189-215. doi: 10.1016/S0040-1951(02)00061-6

    CrossRef Google Scholar

    [61] Lei C, Ren J Y. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 2016, 77:846-864. doi: 10.1016/j.marpetgeo.2016.07.022

    CrossRef Google Scholar

    [62] 姚永坚, 姜玉坤, 曾祥辉. 南沙海域新生代构造运动特征[J]. 中国海上油气(地质), 2002, 16(2):113-117

    Google Scholar

    YAO Yongjian, JIANG Yukun, ZENG Xianghui. Cenozoic tectonic movements in Nansha area, South China Sea[J]. China Offshore Oil and Gas (Geology), 2002, 16(2):113-117.]

    Google Scholar

    [63] 张光学, 白志琳. 南海西南部万安盆地构造样式特征、成因及找油意义[J]. 石油实验地质, 1998, 20(3):210-216 doi: 10.11781/sysydz199803210

    CrossRef Google Scholar

    ZHANG Guangxue, BAI Zhilin. The characteristics of structural styles and their influences on oil and gas accumulation of the Wan'an Basin in the Southwestern South China Sea[J]. Petroleum Geology & Experiment, 1998, 20(3):210-216.] doi: 10.11781/sysydz199803210

    CrossRef Google Scholar

    [64] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12):3280-3291 doi: 10.3969/j.issn.0001-5733.2011.12.026

    CrossRef Google Scholar

    XIE Xinong, ZHANG Cheng, REN Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12):3280-3291.] doi: 10.3969/j.issn.0001-5733.2011.12.026

    CrossRef Google Scholar

    [65] Suo Y H, Li S Z, Jin C, et al. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 2019, 196:102884. doi: 10.1016/j.earscirev.2019.102884

    CrossRef Google Scholar

    [66] Serra S, Nelson R A. Clay modeling of rift asymmetry and associated structures[J]. Tectonophysics, 1988, 153(1-4):307-312. doi: 10.1016/0040-1951(88)90023-6

    CrossRef Google Scholar

    [67] McClay K, Bonora M. Analog models of restraining Stepovers in strike-slip fault systems[J]. AAPG Bulletin, 2001, 85(2):233-260.

    Google Scholar

    [68] McClay K R, Dooley T, Whitehouse P, et al. 4-D evolution of rift systems: insights from scaled physical models[J]. AAPG Bulletin, 2002, 86(6):935-959.

    Google Scholar

    [69] Sun Z, Zhong Z H, Keep M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 2009, 34(4):544-556. doi: 10.1016/j.jseaes.2008.09.002

    CrossRef Google Scholar

    [70] He W G, Shen C B, Wu L, et al. Deformational in curved fold-and-thrust belts: as a function of backstop shape and basal friction: insights from analogue modeling and application to the Pamir salient, Hindu Kush region[J]. Journal of Structural Geology, 2022, 162:104680. doi: 10.1016/j.jsg.2022.104680

    CrossRef Google Scholar

    [71] 孙珍, 钟志洪, 周蒂, 等. 红河断裂带的新生代变形机制及莺歌海盆地的实验证据[J]. 热带海洋学报, 2003, 22(2):1-9 doi: 10.3969/j.issn.1009-5470.2003.02.001

    CrossRef Google Scholar

    SUN Zhen, ZHONG Zhihong, ZHOU Di, et al. Deformation mechanism of Red River fault zone during Cenozoic and experimental evidences related to Yinggehai Basin Formation[J]. Journal of Tropical Oceanography, 2003, 22(2):1-9.] doi: 10.3969/j.issn.1009-5470.2003.02.001

    CrossRef Google Scholar

    [72] 杨刚. 莺歌海盆地红河断裂带左旋走滑构造物理模拟研究[D]. 成都理工大学硕士学位论文, 2018

    Google Scholar

    YANG Gang. The research on the structural physical simulation of left-lateral strike-slip in Red River Fault Zonem, Yinggehai Basin[D]. Master Dissertation of Chengdu University of Technology, 2018.]

    Google Scholar

    [73] 何文刚, 沈传波, 吴磊, 等. 底辟构造启动及其沉积建造形成机制探讨: 来自物理模拟的启示[J]. 大地构造与成矿学, 2023, 47(5):1069-1084

    Google Scholar

    HE Wen’gang, SHEN Chuanbo, WU Lei, et al. Diapiric initiation and Formation mechanism: insights from analogue modelling[J]. Geotectonica et Metallogenia, 2023, 47(5):1069-1084.]

    Google Scholar

    [74] Venâncio M B, Da Silva F C A. Structures evolution along strike-slip fault zones: the role of rheology revealed by PIV analysis of analog modeling[J]. Tectonophysics, 2023, 851:229764. doi: 10.1016/j.tecto.2023.229764

    CrossRef Google Scholar

    [75] 杨振宇, Besse J, 孙知明, 等. 印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化[J]. 地质学报, 1998, 72(2):112-125 doi: 10.3321/j.issn:0001-5717.1998.02.003

    CrossRef Google Scholar

    YANG Zhenyu, Besse J, SUN Zhiming, et al. Tertiary squeeze-out of the Indo-China Block and lithospheric evolution of the Qinghai-Tibetan Plateau[J]. Acta Geologica Sinica, 1998, 72(2):112-125.] doi: 10.3321/j.issn:0001-5717.1998.02.003

    CrossRef Google Scholar

    [76] Naylor M A, Mandl G, Supesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8(7):737-752. doi: 10.1016/0191-8141(86)90022-2

    CrossRef Google Scholar

    [77] McClay K R. Deformation mechanics in analogue models of extensional fault systems[J]. Geological Society, London, Special Publications, 1990, 54:445-453. doi: 10.1144/GSL.SP.1990.054.01.40

    CrossRef Google Scholar

    [78] Marques F O, Nogueira C R. Normal fault inversion by orthogonal compression: Sandbox experiments with weak faults[J]. Journal of Structural Geology, 2008, 30(6):761-766. doi: 10.1016/j.jsg.2008.02.015

    CrossRef Google Scholar

    [79] Dooley T P, Schreurs G. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results[J]. Tectonophysics, 2012, 574-575:1-71. doi: 10.1016/j.tecto.2012.05.030

    CrossRef Google Scholar

    [80] Reber J E, Cooke M L, Dooley T P. What model material to use? A review on rock analogs for structural geology and tectonics[J]. Earth-Science Reviews, 2020, 202:103107. doi: 10.1016/j.earscirev.2020.103107

    CrossRef Google Scholar

    [81] Findlay R H, Trinh P T. The Structural setting of the Song Ma Region, Vietnam and the Indochina-South China plate boundary problem[J]. Gondwana Research, 1997, 1(1):11-33. doi: 10.1016/S1342-937X(05)70003-4

    CrossRef Google Scholar

    [82] Ngo T X, Santosh M, Tran H T, et al. Subduction initiation of Indochina and South China blocks: insight from the forearc ophiolitic peridotites of the Song Ma Suture Zone in Vietnam[J]. Geological Journal, 2016, 51(3):421-442. doi: 10.1002/gj.2640

    CrossRef Google Scholar

    [83] Wang Y, Lin W, Faure M, et al. Correlation among the Ailaoshan–Song Ma–Song Chay orogenic belts and implications for the evolution of the eastern Paleo-Tethys Ocean[J]. Tectonophysics, 2022, 843:229618. doi: 10.1016/j.tecto.2022.229618

    CrossRef Google Scholar

    [84] Wu W J, Su C M, Wen S, et al. Three-dimensional velocity structure beneath the Song Ma area, Vietnam[J]. Journal of Structural Geology, 2024, 179:105038. doi: 10.1016/j.jsg.2023.105038

    CrossRef Google Scholar

    [85] 李思田, 林畅松, 张启明, 等. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J]. 科学通报, 1998, 43(8): 797-810

    Google Scholar

    LI Sitian, LIN Changsong, ZHANG Qiming, et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea[J]. Chinese Science Bulletin, 1999, 44(1): 10-23.]

    Google Scholar

    [86] 郭令智, 钟志洪, 王良书, 等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报, 2001, 7(1):1-12 doi: 10.3969/j.issn.1006-7493.2001.01.001

    CrossRef Google Scholar

    GUO Lingzhi, ZHONG Zhihong, WANG Liangshu, et al. Regional tectonic evolution around Yinggehai Basin of South China Sea[J]. Geological Journal of China Universities, 2001, 7(1):1-12.] doi: 10.3969/j.issn.1006-7493.2001.01.001

    CrossRef Google Scholar

    [87] 孙向阳, 任建业. 莺歌海盆地形成与演化的动力学机制[J]. 海洋地质与第四纪地质, 2003, 23(4):45-50

    Google Scholar

    SUN Xiangyang, REN Jianye. Dynamical mechanism for generation and evolution of Yinggehai Basin, the South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(4):45-50.]

    Google Scholar

    [88] 茹克. 南海北部边缘叠合式盆地的发育及其大地构造意义[J]. 石油与天然气地质, 1988, 9(1):22-31 doi: 10.11743/ogg19880103

    CrossRef Google Scholar

    RU Ke. The development of superimposed Basin on the northern margin of the South China Sea and its tectonic significance[J]. Oil & Gas Geology, 1988, 9(1):22-31.] doi: 10.11743/ogg19880103

    CrossRef Google Scholar

    [89] 孙家振, 李兰斌, 杨士恭, 等. 转换—伸展盆地—莺歌海的演化[J]. 地球科学, 1995, 4(3):243-249

    Google Scholar

    SUN Jiazhen, LI Lanbin, YANG Shigong, et al. Evolution of transform-extension Yinggehai Basin[J]. Earth Science-Journal of China University of Geosciences, 1995, 4(3):243-249.]

    Google Scholar

    [90] 丁中一, 杨小毛, 马莉, 等. 莺歌海盆地拉张性质的研究[J]. 地球物理学报, 1999, 42(1):53-61 doi: 10.3321/j.issn:0001-5733.1999.01.006

    CrossRef Google Scholar

    DING Zhongyi, YANG Xiaomao, MA Li, et al. A study of the stretching behavior of the Yinggehai Basin[J]. Chinese Journal of Geophysics, 1999, 42(1):53-61.] doi: 10.3321/j.issn:0001-5733.1999.01.006

    CrossRef Google Scholar

    [91] McKenzie D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1):25-32. doi: 10.1016/0012-821X(78)90071-7

    CrossRef Google Scholar

    [92] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1):77-87

    Google Scholar

    XIE Xinong, REN Jianye, WANG Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 2015, 22(1):77-87.]

    Google Scholar

    [93] Savva D, Meresse F, Pubellier M, et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam[J]. Tectonophysics, 2013, 608:72-83. doi: 10.1016/j.tecto.2013.07.010

    CrossRef Google Scholar

    [94] Fyhn M B W, Nielsen L H, Boldreel L O, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26(1):1-24. doi: 10.1016/j.marpetgeo.2007.07.014

    CrossRef Google Scholar

    [95] Nguyen H H, Carter A, Hoang L V, et al. Evolution of the continental margin of south to central Vietnam and its relationship to opening of the South China Sea (East Vietnam Sea)[J]. Tectonics, 2022, 41(2):e2021TC006971. doi: 10.1029/2021TC006971

    CrossRef Google Scholar

    [96] Vu A T, Wessel Fyhn M B, Xuan C T, et al. Cenozoic tectonic and stratigraphic development of the Central Vietnamese continental margin[J]. Marine and Petroleum Geology, 2017, 86:386-401. doi: 10.1016/j.marpetgeo.2017.06.001

    CrossRef Google Scholar

    [97] 王海富. 南海海域新生代盆地构造演化的差异性及其成因分析[D]. 西安石油大学硕士学位论文, 2018

    Google Scholar

    WANG Haifu. Differences and causes of tectonic evolution of the Cenozoic basins in the South China Sea and its adjacent regions[D]. Master Dissertation of Xi’an Shiyou University, 2018.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(18) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint