2025 Vol. 45, No. 2
Article Contents

LI Mingchen, YAN Su, GONG Liwei, WANG Xuechen, GENG Runyu, XU Runzhe, ZHOU Liang, WANG Yaping, SHEN Zhixiong. Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 31-42. doi: 10.16562/j.cnki.0256-1492.2024022902
Citation: LI Mingchen, YAN Su, GONG Liwei, WANG Xuechen, GENG Runyu, XU Runzhe, ZHOU Liang, WANG Yaping, SHEN Zhixiong. Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 31-42. doi: 10.16562/j.cnki.0256-1492.2024022902

Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020

More Information
  • Catastrophic floods in large rivers exert significant influences on the sedimentary environment in the estuarine region. However, viewpoints of sedimentary characteristics of the paleoflood in the estuarine delta is controversial. Therefore, it is necessary to understand the sedimentary characteristics of modern flood. The whole Changjiang River basin suffered from a catastrophic flood in 2020. Sixteen sediment cores in the Changjiang subaqueous delta were collected during the flood period. Grain size and organic index (TOC, TN) were measured. The result indicates that the flood layers is 3~21 cm thick, the average TOC and TN is 0.59% and 0.077%, respectively, which is higher than that of lower part deposit. The mean grain size of the flood layers (13.23 µm) is finer than that of the lower part deposits (13.87 µm). The end-member modelling analysis indicated that the finest populations (EM1) were originated from the 2020 flooding. Comparing the EMs of 2020 flood deposits with grain size characteristics of flood deposits in previous studies, we found that the 2020 flood sediments were finer than the lower part non-flood deposits, but coarser than the previous flood sediments, which is different from the common view that the paleoflood deposits are characterized by coarser sediments. We believed that this difference was due to (1) human activities (e.g. dam construction) in the river basin, by which more coarse sediment were trapped within the dam; (2) the weakened erosion in middle and lower reaches of river channels; and (3) the subaqueous delta by ocean dynamic erosion. This study is beneficial for the reconstruction of long-term paleoflood events sequences and the interpretation of extreme event deposition in the estuarine region.

  • 加载中
  • [1] Stanley D J, Warne A G. Worldwide initiation of holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265(5169):228-231. doi: 10.1126/science.265.5169.228

    CrossRef Google Scholar

    [2] Wright L D. Sediment transport and deposition at river mouths: a synthesis[J]. GSA Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    CrossRef Google Scholar

    [3] Hirabayashi Y, Mahendran R, Koirala S, et al. Global flood risk under climate change[J]. Nature Climate Change, 2013, 3(9):816-821. doi: 10.1038/nclimate1911

    CrossRef Google Scholar

    [4] Tessler Z D, Vörösmarty C J, Grossberg M, et al. Profiling risk and sustainability in coastal deltas of the world[J]. Science, 2015, 349(6248):638-643. doi: 10.1126/science.aab3574

    CrossRef Google Scholar

    [5] Yin H F, Li C G. Human impact on floods and flood disasters on the Yangtze River[J]. Geomorphology, 2001, 41(2-3):105-109. doi: 10.1016/S0169-555X(01)00108-8

    CrossRef Google Scholar

    [6] Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108:68-80. doi: 10.1016/j.jseaes.2015.04.028

    CrossRef Google Scholar

    [7] Zhou L, Shi Y, Zhao Y Q, et al. Extreme floods of the Changjiang River over the past two millennia: contributions of climate change and human activity[J]. Marine Geology, 2021, 433:106418. doi: 10.1016/j.margeo.2020.106418

    CrossRef Google Scholar

    [8] Allison M A, Sheremet A, Goñi M A, et al. Storm layer deposition on the Mississippi–Atchafalaya subaqueous delta generated by Hurricane Lili in 2002[J]. Continental Shelf Research, 2005, 25(18):2213-2232. doi: 10.1016/j.csr.2005.08.023

    CrossRef Google Scholar

    [9] Chen Z Y, Song B P, Wang Z H, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Marine Geology, 2000, 162(2-4):423-441. doi: 10.1016/S0025-3227(99)00064-X

    CrossRef Google Scholar

    [10] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023

    CrossRef Google Scholar

    [11] 施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4):289-297 doi: 10.3321/j.issn:1003-5427.2004.04.001

    CrossRef Google Scholar

    SHI Yafeng, JIANG Tong, SU Buda, et al. Preliminary analysis on the relation between the evolution of heavy floods in the Yangtze River catchment and the climate changes since 1840[J]. Journal of Lake Sciences, 2004, 16(4):289-297.] doi: 10.3321/j.issn:1003-5427.2004.04.001

    CrossRef Google Scholar

    [12] Yu F L, Chen Z Y, Ren X Y, et al. Analysis of historical floods on the Yangtze River, China: characteristics and explanations[J]. Geomorphology, 2009, 113(3-4):210-216. doi: 10.1016/j.geomorph.2009.03.008

    CrossRef Google Scholar

    [13] Jiang T, Zhang Q, Blender R, et al. Yangtze Delta floods and droughts of the last millennium: abrupt changes and long term memory[J]. Theoretical and Applied Climatology, 2005, 82(3-4):131-141. doi: 10.1007/s00704-005-0125-4

    CrossRef Google Scholar

    [14] 李雨凡, 周亮, 于世永, 等. 过去两千年长江干流历史洪水事件的时空变化研究[J]. 地球与环境, 2022, 50(2):241-251

    Google Scholar

    LI Yufan, ZHOU Liang, YU Shiyong, et al. Temporal and spatial variations of flood events of the Yangtze River over the past 2000 years[J]. Earth and Environment, 2022, 50(2):241-251.]

    Google Scholar

    [15] Zhan W, Yang S Y, Liu X L, et al. Reconstruction of flood events over the last 150 years in the lower reaches of the Changjiang River[J]. Chinese Science Bulletin, 2010, 55(21):2268-2274. doi: 10.1007/s11434-010-3263-8

    CrossRef Google Scholar

    [16] 盛琛, 陈彬, 安郁辉, 等. 长江口泥质区24Z孔沉积物粒度特征及对洪水事件的沉积响应[J]. 海洋科学, 2020, 44(3):74-84 doi: 10.11759/hykx20190513002

    CrossRef Google Scholar

    SHENG Chen, CHEN Bin, AN Yuhui, et al. Grain-size characteristics of sediments and sedimentary response to flood events from hole 24Z in muddy areas of the Yangtze Estuary[J]. Marine Sciences, 2020, 44(3):74-84.] doi: 10.11759/hykx20190513002

    CrossRef Google Scholar

    [17] 韦璐, 范代读, 吴伊婧, 等. 近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机[J]. 地质通报, 2021, 40(5):707-720

    Google Scholar

    WEI Lu, FAN Daidu, WU Yijing, et al. High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism[J]. Geological Bulletin of China, 2021, 40(5):707-720.]

    Google Scholar

    [18] Hu G, Li A C, Liu J, et al. High resolution records of flood deposition in the mud area off the Changjiang River mouth during the past century[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(4):909-920. doi: 10.1007/s00343-014-3244-x

    CrossRef Google Scholar

    [19] Wang M J, Zheng H B, Xie X, et al. A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records[J]. Chinese Science Bulletin, 2011, 56(2):188-195. doi: 10.1007/s11434-010-4212-2

    CrossRef Google Scholar

    [20] Fan D J, Qi H Y, Sun X X, et al. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from High-resolution biogenic silica and sensitive grain-size records[J]. Continental Shelf Research, 2011, 31(2):129-137. doi: 10.1016/j.csr.2010.12.001

    CrossRef Google Scholar

    [21] Yang S L, Belkin I M, Belkina A I, et al. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4):689-699. doi: 10.1016/S0272-7714(02)00409-2

    CrossRef Google Scholar

    [22] Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1-2):14-20. doi: 10.1016/j.gloplacha.2010.09.006

    CrossRef Google Scholar

    [23] Yang S L, Milliman J D, Xu K H, et al. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River[J]. Earth-Science Reviews, 2014, 138:469-486. doi: 10.1016/j.earscirev.2014.07.006

    CrossRef Google Scholar

    [24] Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis[J]. Sedimentary Geology, 2007, 202(3):425-435. doi: 10.1016/j.sedgeo.2007.03.018

    CrossRef Google Scholar

    [25] 高抒. 沉积物粒径趋势分析: 原理与应用条件[J]. 沉积学报, 2009, 27(5):826-836

    Google Scholar

    GAO Shu. Grain size trend analysis: principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5):826-836.]

    Google Scholar

    [26] McCave I N. Grain-size trends and transport along beaches: example from eastern England[J]. Marine Geology, 1978, 28(1-2):M43-M51. doi: 10.1016/0025-3227(78)90092-0

    CrossRef Google Scholar

    [27] 张瑞, 汪亚平, 高建华, 等. 长江口泥质区垂向沉积结构及其环境指示意义[J]. 海洋学报, 2008, 30(2):80-91

    Google Scholar

    ZHANG Rui, WANG Yaping, GAO Jianhua, et al. The vertical sedimentary structure and its implications for environmental evolutions in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(2):80-91.]

    Google Scholar

    [28] Zhang X D, Ji Y, Yang Z S, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China Earth Sciences, 2016, 59(2):258-267. doi: 10.1007/s11430-015-5165-8

    CrossRef Google Scholar

    [29] Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments[J]. Estuarine, Coastal and Shelf Science, 2020, 236:106656. doi: 10.1016/j.ecss.2020.106656

    CrossRef Google Scholar

    [30] 张晓东, 翟世奎, 许淑梅. 端元分析模型在长江口邻近海域沉积物粒度数据反演方面的应用[J]. 海洋学报, 2006, 28(4):159-166

    Google Scholar

    ZHANG Xiaodong, ZHAI Shikui, XU Shumei. The application of grain-size end-member modeling to the shelf near the estuary of Changjiang River in China[J]. Acta Oceanologica Sinica, 2006, 28(4):159-166.]

    Google Scholar

    [31] 赵松, 常凤鸣, 李铁刚, 等. 粒度端元法在东海内陆架古环境重建中的应用[J]. 海洋地质与第四纪地质, 2017, 37(3):187-196

    Google Scholar

    ZHAO Song, CHANG Fengming, LI Tiegang, et al. The application of grain-size end member algorithm to paleoenvironmental reconstruction on inner shelf of East China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):187-196.]

    Google Scholar

    [32] Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085

    CrossRef Google Scholar

    [33] 张晓东, 许淑梅, 翟世奎, 等. 东海内陆架沉积气候信息的端元分析模型反演[J]. 海洋地质与第四纪地质, 2006, 26(2):25-32

    Google Scholar

    ZHANG Xiaodong, XU shumei, ZHAI Shikui, et al. The inversion of climate information from the sediment of inner shelf of East China Sea using end-member model[J]. Marine Geology & Quaternary Geology, 2006, 26(2):25-32.]

    Google Scholar

    [34] 朱林, 陈晓红, 郭兴杰, 等. 近十年来长江口北支动力地貌演化过程[J]. 上海国土资源, 2022, 43(2):78-83 doi: 10.3969/j.issn.2095-1329.2022.02.014

    CrossRef Google Scholar

    ZHU Lin, CHEN Xiaohong, GUO Xingjie, et al. Dynamic geomorphology evolution of the North Branch of the Yangtze River Estuary in recent ten years[J]. Shanghai Land & Resources, 2022, 43(2):78-83.] doi: 10.3969/j.issn.2095-1329.2022.02.014

    CrossRef Google Scholar

    [35] Zhan Q, Li M T, Liu X Q, et al. Sedimentary transition of the Yangtze subaqueous delta during the past century: inspiration for delta response to future decline of sediment supply[J]. Marine Geology, 2020, 428:106279. doi: 10.1016/j.margeo.2020.106279

    CrossRef Google Scholar

    [36] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4):1-16

    Google Scholar

    SU Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Acta Oceanologica Sinica, 2001, 23(4):1-16.]

    Google Scholar

    [37] 郭志刚, 杨作升, 范德江, 等. 长江口泥质区的季节性沉积效应[J]. 地理学报, 2003, 58(4):591-597 doi: 10.3321/j.issn:0375-5444.2003.04.014

    CrossRef Google Scholar

    GUO Zhigang, YANG Zuosheng, FAN Dejiang, et al. Seasonal sedimentary effect on the Changjiang Estuary mud area[J]. Acta Geographica Sinica, 2003, 58(4):591-597.] doi: 10.3321/j.issn:0375-5444.2003.04.014

    CrossRef Google Scholar

    [38] 吴增斌, 郭磊城, 吴雪枫, 等. 2020年特大洪水作用下长江口南槽水沙输移特征[J]. 海洋与湖沼, 2022, 53(2):295-304 doi: 10.11693/hyhz20210800194

    CrossRef Google Scholar

    WU Zengbin, GUO Leicheng, WU Xuefeng, et al. A field study of hydrodynamics and sediment transport in the south passage of the Changjiang River estuary during big river flood in July 2020[J]. Oceanologia et Limnologia Sinica, 2022, 53(2):295-304.] doi: 10.11693/hyhz20210800194

    CrossRef Google Scholar

    [39] Tang R N, Dai Z J, Mei X F, et al. Joint impacts of dams and floodplain on the rainfall-induced extreme flood in the Changjiang (Yangtze) River[J]. Journal of Hydrology, 2023, 627:130428. doi: 10.1016/j.jhydrol.2023.130428

    CrossRef Google Scholar

    [40] Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11):1237-1248. doi: 10.1002/esp.261

    CrossRef Google Scholar

    [41] Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [42] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12):4494-4506. doi: 10.1002/2015GC006070

    CrossRef Google Scholar

    [43] 王兆夺, 于东生. 泉州湾表层沉积物粒度特征分析[J]. 应用海洋学学报, 2015, 34(3):326-333 doi: 10.3969/J.ISSN.2095-4972.2015.03.004

    CrossRef Google Scholar

    WANG Zhaoduo, YU Dongsheng. Characteristics of grain sizes in surface sediments of Quanzhou Bay[J]. Journal of Applied Oceanography, 2015, 34(3):326-333.] doi: 10.3969/J.ISSN.2095-4972.2015.03.004

    CrossRef Google Scholar

    [44] 薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89

    Google Scholar

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5):75-89.]

    Google Scholar

    [45] Khan N S, Horton B P, McKee K L, et al. Tracking sedimentation from the historic A. D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA[J]. Geology, 2013, 41(4):391-394. doi: 10.1130/G33805.1

    CrossRef Google Scholar

    [46] 李华勇, 袁俊英, 杨艺萍, 等. 山东弥河流域现代洪水沉积特征与水动力过程反演[J]. 海洋地质与第四纪地质, 2022, 42(2):178-189

    Google Scholar

    LI Huayong, YUAN Junying, YANG Yiping, et al. Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes[J]. Marine Geology & Quaternary Geology, 2022, 42(2):178-189.]

    Google Scholar

    [47] 董坚, 何青, 林建良, 等. 长江口特大洪水浑浊带悬沙粒度分布特征[J]. 海洋通报, 2023, 42(1):48-58

    Google Scholar

    DONG Jian, HE Qing, LIN Jianliang, et al. The distribution of suspended sediment grain size in Changjiang Estuary turbidity maximum zone during the extreme flood[J]. Marine Science Bulletin, 2023, 42(1):48-58.]

    Google Scholar

    [48] Yang H F, Yang S L, Meng Y, et al. Recent coarsening of sediments on the southern Yangtze subaqueous delta front: a response to river damming[J]. Continental Shelf Research, 2018, 155:45-51. doi: 10.1016/j.csr.2018.01.012

    CrossRef Google Scholar

    [49] Wang Y H, Dong P, Oguchi T, et al. Long-term (1842–2006) morphological change and equilibrium state of the Changjiang (Yangtze) Estuary, China[J]. Continental Shelf Research, 2013, 56:71-81. doi: 10.1016/j.csr.2013.02.006

    CrossRef Google Scholar

    [50] Zhang R, Li T G, Russell J, et al. High-resolution reconstruction of historical flood events in the Changjiang River catchment based on geochemical and biomarker records[J]. Chemical Geology, 2018, 499:58-70. doi: 10.1016/j.chemgeo.2018.09.003

    CrossRef Google Scholar

    [51] Mei X F, Dai Z J, Darby S E, et al. Landward shifts of the maximum accretion zone in the tidal reach of the Changjiang estuary following construction of the Three Gorges Dam[J]. Journal of Hydrology, 2021, 592:125789. doi: 10.1016/j.jhydrol.2020.125789

    CrossRef Google Scholar

    [52] 陆子骞, 张国安, 张卫国, 等. 泥沙来源减少后长江口最大浑浊带变化研究[J]. 泥沙研究, 2022, 47(3):67-72

    Google Scholar

    LU Ziqian, ZHANG Guoan, ZHANG Weiguo, et al. Processes of the maximum turbidity zone of the Yangtze Estuary under the background of reduced sediment sources[J]. Journal of Sediment Research, 2022, 47(3):67-72.]

    Google Scholar

    [53] 陈雅望, 盛辉, 许庆华, 等. 近40年来长江口沉积物粒度变化及其对底床冲淤的响应[J]. 水利水运工程学报, 2021, (5):8-18 doi: 10.12170/20210628002

    CrossRef Google Scholar

    CHEN Yawang, SHENG Hui, XU Qinghua, et al. Analysis of sediment grain size change and its response to erosion and deposition pattern within the Yangtze River Estuary for the past 40 years[J]. Hydro-Science and Engineering, 2021, (5):8-18.] doi: 10.12170/20210628002

    CrossRef Google Scholar

    [54] Wang J, Dai Z J, Mei X F, et al. Tropical cyclones significantly alleviate mega-deltaic erosion induced by high riverine flow[J]. Geophysical Research Letters, 2020, 47(19):e2020GL089065. doi: 10.1029/2020GL089065

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(11) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint