2024 Vol. 44, No. 2
Article Contents

WANG Yuhan, AN Fuyuan, LIU Xiangjun. Regional characteristics and mechanisms of lake water level decline in the Xizang Plateau since 2 000 years ago[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 55-68. doi: 10.16562/j.cnki.0256-1492.2024021801
Citation: WANG Yuhan, AN Fuyuan, LIU Xiangjun. Regional characteristics and mechanisms of lake water level decline in the Xizang Plateau since 2 000 years ago[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 55-68. doi: 10.16562/j.cnki.0256-1492.2024021801

Regional characteristics and mechanisms of lake water level decline in the Xizang Plateau since 2 000 years ago

More Information
  • The Xizang Plateau (TP) was divided into three zones based on the influence of the Asian summer monsoon and the westerlies. By comparing multiple proxy indicators in sediments with late Holocene volcanic activity, the Northern Hemisphere temperatures, and the Asian monsoon index, the reasons for the decline in plateau lake levels ~2 kaBP were explored and the spatial differences in lake responses to climate fluctuations in the different zones were analyzed. Results show that the decline in lake water level in the southwestern part of the TP is greater than in the northwestern part, and even greater in the northeastern TP. This may be due to the weakening in the intensity of the Indian Summer Monsoon (ISM), which made lakes in the southwestern TP more dependent on the ISM precipitation replenishment and thus more sensitive to the reduction in water vapor flux brought by the ISM. Moreover, during this period, the phase of the North Atlantic Oscillation (NAO) shifted from negative to positive, leading to the increase in water vapor convergence in the northern part of the TP with more precipitation there, while the southern part of the TP received less rainfall, resulting in a generally greater decline in water levels in the southern lakes compared to those in the north. The main cause of the climate turning to colder and drier in the TP ~2 kaBP is attributed to the intensification of El Niño. In addition, the different phases of the Southern Annular Mode in winter and summer through complex ocean-atmosphere coupling processes crossing the equator, also played a role in cooling and dehumidifying the climate of the TP.

  • 加载中
  • [1] Qiu J. China: the third pole[J]. Nature, 2008, 454(7203):393-396. doi: 10.1038/454393a

    CrossRef Google Scholar

    [2] Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4):351-364. doi: 10.1016/j.quascirev.2007.10.017

    CrossRef Google Scholar

    [3] Liu X J, Madsen D B, Liu R Y, et al. Holocene lake level variations of Longmu Co, western Qinghai-Xizang Plateau[J]. Environmental Earth Sciences, 2016, 75(4):301. doi: 10.1007/s12665-015-5188-7

    CrossRef Google Scholar

    [4] Liu X J, Lai Z P, Madsen D, et al. Last deglacial and Holocene lake level variations of Qinghai lake, north-eastern Qinghai–Xizang Plateau[J]. Journal of Quaternary Science, 2015, 30(3):245-257. doi: 10.1002/jqs.2777

    CrossRef Google Scholar

    [5] Shi X H, Kirby E, Furlong K P, et al. Rapid and punctuated late Holocene recession of Siling Co, central Xizang[J]. Quaternary Science Reviews, 2017, 172:15-31. doi: 10.1016/j.quascirev.2017.07.017

    CrossRef Google Scholar

    [6] Huang C, Yu L P, Lai Z P. Holocene millennial lake-level fluctuations of Lake Nam Co in Xizang using OSL dating of shorelines[J]. Journal of Hydrology, 2023, 618:128643. doi: 10.1016/j.jhydrol.2022.128643

    CrossRef Google Scholar

    [7] Huang L, Chen Y W, Wu Y, et al. Lake level changes of Nam Co since 25 ka as revealed by OSL dating of paleo-shorelines[J]. Quaternary Geochronology, 2022, 70:101274. doi: 10.1016/j.quageo.2022.101274

    CrossRef Google Scholar

    [8] Ahlborn M, Haberzettl T, Wang J B, et al. Holocene lake level history of the Tangra Yumco lake system, southern-central Xizang Plateau[J]. The Holocene, 2016, 26(2):176-187. doi: 10.1177/0959683615596840

    CrossRef Google Scholar

    [9] Cong L, Wang Y X, Zhang X Y, et al. Radiocarbon and luminescence dating of lacustrine sediments in Zhari Namco, southern Xizang Plateau[J]. Frontiers in Earth Science, 2021, 9:640172. doi: 10.3389/feart.2021.640172

    CrossRef Google Scholar

    [10] Chen Y W, Zong Y Q, Li B, et al. Shrinking lakes in Xizang linked to the weakening Asian monsoon in the past 8.2 ka[J]. Quaternary Research, 2013, 80(2):189-198. doi: 10.1016/j.yqres.2013.06.008

    CrossRef Google Scholar

    [11] Liu X J, Madsen D, Zhang X J. The driving forces underlying spatiotemporal lake extent changes in the inner Xizang Plateau during the Holocene[J]. Frontiers in Earth Science, 2021, 9:685928. doi: 10.3389/feart.2021.685928

    CrossRef Google Scholar

    [12] 丛禄, 王懿萱, 孙爱军, 等. 青藏高原中部当穹错末次冰消期以来湖面变化研究[J]. 第四纪研究, 2021, 41(6):1619-1631 doi: 10.11928/j.issn.1001-7410.2021.06.10

    CrossRef Google Scholar

    CONG Lu, WANG Yixuan, SUN Aijun, et al. Lake level variations of Tanqung Co since last deglaciation, central Xizang Plateau[J]. Quaternary Sciences, 2021, 41(6):1619-1631.] doi: 10.11928/j.issn.1001-7410.2021.06.10

    CrossRef Google Scholar

    [13] 丛禄. 青藏高原全新世湖泊演化与其湖岸风成沉积物相关性研究[D]. 中国科学院大学(中国科学院青海盐湖研究所)博士学位论文, 2021

    Google Scholar

    CONG Lu. The research of correlation relationship between evolution of typical lakes and lakeside's aeolian sediments within Xizang Plateau[D]. Doctor Dissertation of Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2021.]

    Google Scholar

    [14] Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50, 000 years[J]. Quaternary Science Reviews, 2006, 25(1-2):163-178. doi: 10.1016/j.quascirev.2005.02.006

    CrossRef Google Scholar

    [15] Herzschuh U, Mischke S, Meyer H, et al. Using variations in the stable carbon isotope composition of macrophyte remains to quantify nutrient dynamics in lakes[J]. Journal of Paleolimnology, 2010, 43(4):739-750. doi: 10.1007/s10933-009-9365-0

    CrossRef Google Scholar

    [16] Cane M A. The evolution of El Niño, past and future[J]. Earth and Planetary Science Letters, 2005, 230(3-4):227-240. doi: 10.1016/j.jpgl.2004.12.003

    CrossRef Google Scholar

    [17] Clement A C, Seager R, Cane M A. Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography, 2000, 15(6):731-737. doi: 10.1029/1999PA000466

    CrossRef Google Scholar

    [18] Li C G, Wang M D, Liu W G, et al. Quantitative estimates of Holocene glacier meltwater variations on the Western Xizang Plateau[J]. Earth and Planetary Science Letters, 2021, 559:116766. doi: 10.1016/j.jpgl.2021.116766

    CrossRef Google Scholar

    [19] Gasse F, Fontes J C, Van Campo E, et al. Holocene environmental changes in Bangong Co basin (Western Xizang). Part 4: discussion and conclusions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2):79-92. doi: 10.1016/0031-0182(95)00035-6

    CrossRef Google Scholar

    [20] Zhang Y Z, Zhang J W, McGowan S, et al. Climatic and environmental change in the western Xizang Plateau during the Holocene, recorded by lake sediments from Aweng Co[J]. Quaternary Science Reviews, 2021, 259:106889. doi: 10.1016/j.quascirev.2021.106889

    CrossRef Google Scholar

    [21] Mishra P K, Prasad S, Anoop A, et al. Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 425:76-83. doi: 10.1016/j.palaeo.2015.02.031

    CrossRef Google Scholar

    [22] Yan D D, Wünnemann B. Late Quaternary water depth changes in Hala Lake, northeastern Xizang Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records[J]. Quaternary Science Reviews, 2014, 95:95-114. doi: 10.1016/j.quascirev.2014.04.030

    CrossRef Google Scholar

    [23] Zhang W Y, Mischke S, Hosner D, et al. Late glacial and Holocene climate in the Kunlun Pass region (northern Xizang Plateau) inferred from a multi-proxy lake record[J]. Quaternary International, 2023, 643:46-60. doi: 10.1016/j.quaint.2022.10.013

    CrossRef Google Scholar

    [24] Wünnemann B, Yan D D, Andersen N, et al. A 14 ka high-resolution δ18O lake record reveals a paradigm shift for the process-based reconstruction of hydroclimate on the northern Xizang Plateau[J]. Quaternary Science Reviews, 2018, 200:65-84. doi: 10.1016/j.quascirev.2018.09.040

    CrossRef Google Scholar

    [25] 李友谟, 吴铎, 袁子杰, 等. 青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应[J]. 第四纪研究, 2022, 42(5):1328-1348

    Google Scholar

    LI Youmo, WU Duo, YUAN Zijie, et al. Holocene summer monsoon variation and environmental response in the drainage basin of Lake Bande in the inner Xizang Plateau[J]. Quaternary Sciences, 2022, 42(5):1328-1348.]

    Google Scholar

    [26] Bird B W, Lei Y B, Perello M, et al. Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir’pa Co, southeastern Xizang[J]. The Holocene, 2017, 27(4):541-552. doi: 10.1177/0959683616670220

    CrossRef Google Scholar

    [27] Feng X P, Zhao C, D'Andrea W J, et al. Evidence for a relatively warm mid-to late holocene on the southeastern Xizang Plateau[J]. Geophysical Research Letters, 2022, 49(15):e2022GL098740. doi: 10.1029/2022GL098740

    CrossRef Google Scholar

    [28] 赵光通, 都永生, 魏海成, 等. 班戈错盐湖古湖岸堤石英光释光年代学及其古环境指示意义研究[J]. 盐湖研究, 2018, 26(3):26-34

    Google Scholar

    ZHAO Guangtong, DU Yongsheng, WEI Haicheng, et al. Optically stimulated luminescence dating of paleo-shorelines of bange Co, Qinghai-Xizang Plateau and its implications for palaeo-environment[J]. Journal of Salt Lake Research, 2018, 26(3):26-34.]

    Google Scholar

    [29] Herzschuh U, Winter K, Wünnemann B, et al. A general cooling trend on the central Xizang Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra[J]. Quaternary International, 2006, 154-155:113-121. doi: 10.1016/j.quaint.2006.02.005

    CrossRef Google Scholar

    [30] 黄凌昕, 陈婕, 阳坤, 等. 现代青藏高原亚洲夏季风气候北界及其西风区和季风区划分[J]. 中国科学: 地球科学, 2023, 53(4): 866-678

    Google Scholar

    HUANG Lingxin, CHEN Jie, YANG Kun, et al. The northern boundary of the Asian summer monsoon and division of westerlies and monsoon regimes over the Xizang Plateau in present-day[J]. Science China Earth Sciences, 2023, 66(4): 882-893.]

    Google Scholar

    [31] 张镱锂, 李炳元, 刘林山, 等. 再论青藏高原范围[J]. 地理研究, 2021, 40(6):1543-1553

    Google Scholar

    ZHANG Yili, LI Bingyuan, LIU Linshan, et al. Redetermine the region and boundaries of Xizang Plateau[J]. Geographical Research, 2021, 40(6):1543-1553.]

    Google Scholar

    [32] Gomez B, Carter L, Orpin A R, et al. ENSO/SAM interactions during the middle and late Holocene[J]. The Holocene, 2012, 22(1):23-30. doi: 10.1177/0959683611405241

    CrossRef Google Scholar

    [33] Qiao B J, Zhu L P, Yang R M. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Xizang Plateau[J]. Remote Sensing of Environment, 2019, 222:232-243. doi: 10.1016/j.rse.2018.12.037

    CrossRef Google Scholar

    [34] Yu W S, Ma Y M, Sun W Z, et al. Climatic significance of δ18O records from precipitation on the western Xizang Plateau[J]. Chinese Science Bulletin, 2009, 54(16):2732-2741. doi: 10.1007/s11434-009-0495-6

    CrossRef Google Scholar

    [35] Gasse F, Arnold M, Fontes J C, et al. A 13, 000-year climate record from western Xizang[J]. Nature, 1991, 353(6346):742-745. doi: 10.1038/353742a0

    CrossRef Google Scholar

    [36] Thompson L G, Severinghaus J P, Yao T D, et al. Use of δ18Oatm in dating a Xizang ice core record of Holocene/Late Glacial climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(45):e2205545119.

    Google Scholar

    [37] Wu D, Ma X Y, Yuan Z J, et al. Holocene hydroclimatic variations on the Xizang Plateau: an isotopic perspective[J]. Earth-Science Reviews, 2022, 233:104169. doi: 10.1016/j.earscirev.2022.104169

    CrossRef Google Scholar

    [38] Quade J, Broecker W S. Dryland hydrology in a warmer world: lessons from the Last Glacial period[J]. The European Physical Journal Special Topics, 2009, 176(1):21-36. doi: 10.1140/epjst/e2009-01146-y

    CrossRef Google Scholar

    [39] Rades E F, Tsukamoto S, Frechen M, et al. A lake-level chronology based on feldspar luminescence dating of beach ridges at Tangra Yum Co (southern Xizang)[J]. Quaternary Research, 2015, 83(3):469-478. doi: 10.1016/j.yqres.2015.03.002

    CrossRef Google Scholar

    [40] Rades E F, Hetzel R, Xu Q, et al. Constraining Holocene lake-level highstands on the Xizang Plateau by 10Be exposure dating: a case study at Tangra Yumco, southern Xizang[J]. Quaternary Science Reviews, 2013, 82:68-77. doi: 10.1016/j.quascirev.2013.09.016

    CrossRef Google Scholar

    [41] 郑度, 李炳元. 青藏高原自然地理研究的进展[J]. 地理学报, 1990, 45(2):235-244

    Google Scholar

    ZHENG Du, LI Bingyuan. Recent progress of geographical studies on the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 1990, 45(2):235-244.]

    Google Scholar

    [42] Hou S G, Zhang W B, Pang H X, et al. Apparent discrepancy of Xizang ice core δ18O records may be attributed to misinterpretation of chronology[J]. The Cryosphere, 2019, 13(6):1743-1752. doi: 10.5194/tc-13-1743-2019

    CrossRef Google Scholar

    [43] 俞鸣同, 林振山, 杜建丽, 等. 格陵兰冰芯氧同位素显示近千年气候变化的多尺度分析[J]. 冰川冻土, 2009, 31(6):1037-1042

    Google Scholar

    YU Mingtong, LIN Zhenshan, DU Jianli, et al. Multi-scale analysis of the last millennium climate variations in Greenland derived from ice core oxygen isotope[J]. Journal of Glaciology and Geocryology, 2009, 31(6):1037-1042.]

    Google Scholar

    [44] 威廉斯, Dunkerley D L, De Deckker P, 等. 第四纪环境[M]. 刘东生, 译. 北京: 科学出版社, 1997

    Google Scholar

    Williams M A J, Dunkerley D L, De Deckker P, et al. Quaternary Environments[M]. LIU Dongsheng, trans. Beijing: Science Press, 1997.]

    Google Scholar

    [45] Yang B, Qin C, Bräuning A, et al. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6, 700 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(30):e2102007118.

    Google Scholar

    [46] Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 2005, 136(1):131-140. doi: 10.1016/j.quaint.2004.11.014

    CrossRef Google Scholar

    [47] Hou J Z, Huang Y S, Zhao J T, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Xizang Plateau[J]. Geophysical Research Letters, 2016, 43(3):1323-1330. doi: 10.1002/2015GL067317

    CrossRef Google Scholar

    [48] Kasper T, Wang J B, Schwalb A, et al. Precipitation dynamics on the Xizang Plateau during the Late Quaternary – Hydroclimatic sedimentary proxies versus lake level variability[J]. Global and Planetary Change, 2021, 205:103594. doi: 10.1016/j.gloplacha.2021.103594

    CrossRef Google Scholar

    [49] Doberschütz S, Frenzel P, Haberzettl T, et al. Monsoonal forcing of Holocene paleoenvironmental change on the central Xizang Plateau inferred using a sediment record from Lake Nam Co (Xizang, China)[J]. Journal of Paleolimnology, 2014, 51(2):253-266. doi: 10.1007/s10933-013-9702-1

    CrossRef Google Scholar

    [50] Kylander M E, Ampel L, Wohlfarth B, et al. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies[J]. Journal of Quaternary Science, 2011, 26(1):109-117. doi: 10.1002/jqs.1438

    CrossRef Google Scholar

    [51] Gyawali A R, Wang J B, Ma Q F, et al. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Xizang[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:101-112. doi: 10.1016/j.palaeo.2018.11.033

    CrossRef Google Scholar

    [52] Gu Z Y, Liu J Q, Yuan B Y, et al. Monsoon variations of the Qinghai-Xizang plateau during the last 12, 000 years: geochemical evidence from the sediments in the Siling Lake[J]. Chinese Science Bulletin, 1993, 38(7):577-581. doi: 10.1360/csb1993-38-7-577

    CrossRef Google Scholar

    [53] Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Xizang Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51(4):525-548. doi: 10.1002/rog.20023

    CrossRef Google Scholar

    [54] Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Xizang Plateau during the Holocene: a comprehensive review[J]. Quaternary Science Reviews, 2020, 243:106444. doi: 10.1016/j.quascirev.2020.106444

    CrossRef Google Scholar

    [55] Pang H X, Hou S G, Zhang W B, et al. Temperature trends in the northwestern Xizang Plateau constrained by ice core water isotopes over the past 7, 000 years[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(19):e2020JD032560. doi: 10.1029/2020JD032560

    CrossRef Google Scholar

    [56] Lang T J, Barros A P. Winter storms in the central Himalayas[J]. Journal of the Meteorological Society of Japan. Ser. II, 2004, 82(3):829-844. doi: 10.2151/jmsj.2004.829

    CrossRef Google Scholar

    [57] Pang H, Hou S, Kaspari S, et al. Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas[J]. The Cryosphere, 2014, 8(1):289-301. doi: 10.5194/tc-8-289-2014

    CrossRef Google Scholar

    [58] Feng L, Zhou T J. Water vapor transport for summer precipitation over the Xizang Plateau: multidata set analysis[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D20):D20114.

    Google Scholar

    [59] Zhang X J, Jin L Y, Jia W N. Centennial-scale teleconnection between North Atlantic sea surface temperatures and the Indian summer monsoon during the Holocene[J]. Climate Dynamics, 2016, 46(9):3323-3336.

    Google Scholar

    [60] Grossmann I, Klotzbach P J. A review of North Atlantic modes of natural variability and their driving mechanisms[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D24):D24107.

    Google Scholar

    [61] Knight J R, Folland C K, Scaife A A. Climate impacts of the Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2006, 33(17):L17706.

    Google Scholar

    [62] Li S L, Bates G T. Influence of the Atlantic multidecadal oscillation on the winter climate of East China[J]. Advances in Atmospheric Sciences, 2007, 24(1):126-135. doi: 10.1007/s00376-007-0126-6

    CrossRef Google Scholar

    [63] 刘焕才, 段克勤. 北大西洋涛动对青藏高原夏季降水的影响[J]. 冰川冻土, 2012, 34(2):311-318

    Google Scholar

    LIU Huancai, DUAN Keqin. Effects of North Atlantic Oscillation on summer precipitation over the Xizang Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(2):311-318.]

    Google Scholar

    [64] Overpeck J, Anderson D, Trumbore S, et al. The southwest Indian Monsoon over the last 18 000 years[J]. Climate Dynamics, 1996, 12(3):213-225. doi: 10.1007/BF00211619

    CrossRef Google Scholar

    [65] Wang C Z, Deser C, Yu J Y, et al. El Niño and southern oscillation (ENSO): a review[M]//Glynn P W, Manzello D P, Enochs I C. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment. Dordrecht: Springer, 2017: 85-106.

    Google Scholar

    [66] Srivastava G, Chakraborty A, Nanjundiah R S. Multidecadal variations in ENSO-Indian summer monsoon relationship at sub-seasonal timescales[J]. Theoretical and Applied Climatology, 2020, 140(3):1299-1314.

    Google Scholar

    [67] Lin S H, Yang S, He S, et al. Atmospheric–oceanic processes over the Pacific involved in the effects of the Indian summer monsoon on ENSO[J]. Journal of Climate, 2023, 36(17):6021-6043. doi: 10.1175/JCLI-D-22-0822.1

    CrossRef Google Scholar

    [68] Brown J R, Hope P, Gergis J, et al. ENSO teleconnections with Australian rainfall in coupled model simulations of the last millennium[J]. Climate Dynamics, 2016, 47(1):79-93.

    Google Scholar

    [69] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11-12):1166-1180. doi: 10.1016/j.quascirev.2008.02.015

    CrossRef Google Scholar

    [70] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912):162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [71] Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751):360-363.

    Google Scholar

    [72] Zinke J, Pfeiffer M, Park W, et al. Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present[J]. Climate Dynamics, 2014, 43(3-4):689-708. doi: 10.1007/s00382-014-2082-z

    CrossRef Google Scholar

    [73] Zinke J, Rountrey A, Feng M, et al. Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795[J]. Nature Communications, 2014, 5(1):3607. doi: 10.1038/ncomms4607

    CrossRef Google Scholar

    [74] Stuecker M F, Timmermann A, Jin F F, et al. Revisiting ENSO/Indian Ocean dipole phase relationships[J]. Geophysical Research Letters, 2017, 44(5):2481-2492. doi: 10.1002/2016GL072308

    CrossRef Google Scholar

    [75] Hong C C, Li T, LinHo, et al. Asymmetry of the Indian Ocean Dipole. Part I: observational analysis[J]. Journal of Climate, 2008, 21(18):4834-4848. doi: 10.1175/2008JCLI2222.1

    CrossRef Google Scholar

    [76] Cai W J, Zheng X T, Weller E, et al. Projected response of the Indian Ocean Dipole to greenhouse warming[J]. Nature Geoscience, 2013, 6(12):999-1007. doi: 10.1038/ngeo2009

    CrossRef Google Scholar

    [77] 黄怡陶, 张文君, 薛奥运. ENSO对印度洋偶极子非对称性的影响及机制研究[J]. 气象科学, 2023, 43(1):1-14

    Google Scholar

    HUANG Yitao, ZHANG Wenjun, XUE Aoyun. Influence of ENSO on Indian Ocean Dipole skewness and its physical mechanism[J]. Journal of the Meteorological Sciences, 2023, 43(1):1-14.]

    Google Scholar

    [78] Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533):1304-1308. doi: 10.1126/science.1059725

    CrossRef Google Scholar

    [79] Schneider T, Bischoff T, Haug G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7516):45-53. doi: 10.1038/nature13636

    CrossRef Google Scholar

    [80] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2):71-86. doi: 10.1016/j.jpgl.2005.01.036

    CrossRef Google Scholar

    [81] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723):854-857. doi: 10.1126/science.1106296

    CrossRef Google Scholar

    [82] Mamalakis A, Randerson J T, Yu J Y, et al. Zonally contrasting shifts of the tropical rain belt in response to climate change[J]. Nature Climate Change, 2021, 11(2):143-151. doi: 10.1038/s41558-020-00963-x

    CrossRef Google Scholar

    [83] Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11, 300 years[J]. Science, 2013, 339(6124):1198-1201. doi: 10.1126/science.1228026

    CrossRef Google Scholar

    [84] Moreno P I, Vilanova I, Villa-Martínez R, et al. Onset and evolution of southern annular mode-like changes at centennial timescale[J]. Scientific Reports, 2018, 8(1):3458. doi: 10.1038/s41598-018-21836-6

    CrossRef Google Scholar

    [85] Kobashi T, Menviel L, Jeltsch-Thömmes A, et al. Volcanic influence on centennial to millennial Holocene Greenland temperature change[J]. Scientific Reports, 2017, 7(1):1441. doi: 10.1038/s41598-017-01451-7

    CrossRef Google Scholar

    [86] Thompson D W J, Wallace J M. Annular modes in the extratropical circulation. Part I: month-to-month variability[J]. Journal of Climate, 2000, 13(5):1000-1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

    CrossRef Google Scholar

    [87] 郑菲, 李建平, 刘婷. 南半球环状模气候影响的若干研究进展[J]. 气象学报, 2014, 72(5):926-939

    Google Scholar

    ZHENG Fei, LI Jianping, LIU Ting. Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode[J]. Acta Meteorologica Sinica, 2014, 72(5):926-939.]

    Google Scholar

    [88] 豆娟. 南半球环状模对青藏高原及周边气候的可能影响[D]. 南京信息工程大学博士学位论文, 2019

    Google Scholar

    DOU Juan. Possible influence of the Southern Hemiphere annular mode on the climate over the Xizang Plateau and its surrounding areas[D]. Doctor Dissertation of Nanjing University of Information Science & Technology, 2019.]

    Google Scholar

    [89] Zheng F, Li J P, Ding R Q. Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay[J]. Advances in Atmospheric Sciences, 2017, 34(11):1358-1379. doi: 10.1007/s00376-017-6339-4

    CrossRef Google Scholar

    [90] Silvestri G, Berman A L, Braconnot P, et al. Long-term trends in the Southern Annular Mode from transient Mid- to Late Holocene simulation with the IPSL-CM5A2 climate model[J]. Climate Dynamics, 2022, 59(3-4):903-914. doi: 10.1007/s00382-022-06160-0

    CrossRef Google Scholar

    [91] Barnett T P, Dümenil L, Schlese U, et al. The effect of Eurasian snow cover on global climate[J]. Science, 1988, 239(4839):504-507. doi: 10.1126/science.239.4839.504

    CrossRef Google Scholar

    [92] Yasunari T, Kitoh A, Tokioka T. Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate[J]. Journal of the Meteorological Society of Japan. Ser. II, 1991, 69(4):473-487. doi: 10.2151/jmsj1965.69.4_473

    CrossRef Google Scholar

    [93] Hall A, Visbeck M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode[J]. Journal of Climate, 2002, 15(21):3043-3057. doi: 10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2

    CrossRef Google Scholar

    [94] Lefebvre W, Goosse H, Timmermann R, et al. Influence of the Southern Annular Mode on the sea ice–ocean system[J]. Journal of Geophysical Research:Oceans, 2004, 109(C9):C09005.

    Google Scholar

    [95] Zhang Y Z, Li J P, Zhao S, et al. Indian Ocean tripole mode and its associated atmospheric and oceanic processes[J]. Climate Dynamics, 2020, 55(5-6):1367-1383. doi: 10.1007/s00382-020-05331-1

    CrossRef Google Scholar

    [96] Gill A E. Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(449):447-462.

    Google Scholar

    [97] Hoskins B J, Simmons A J, Andrews D G. Energy dispersion in a barotropic atmosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(438):553-567. doi: 10.1002/qj.49710343802

    CrossRef Google Scholar

    [98] Hoskins B J, Karoly D J. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. Journal of the Atmospheric Sciences, 1981, 38(6):1179-1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2

    CrossRef Google Scholar

    [99] Karoly D J. Southern hemisphere circulation features associated with El Niño-Southern Oscillation events[J]. Journal of Climate, 1989, 2(11):1239-1252. doi: 10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2

    CrossRef Google Scholar

    [100] Li L, Nathan T R. Effects of low-frequency tropical forcing on intraseasonal tropical–extratropical interactions[J]. Journal of the Atmospheric Sciences, 1997, 54(2):332-346. doi: 10.1175/1520-0469(1997)054<0332:EOLFTF>2.0.CO;2

    CrossRef Google Scholar

    [101] Dou J, Wu Z W. Southern Hemisphere origins for interannual variations of snow cover over the western Xizang Plateau in boreal summer[J]. Journal of Climate, 2018, 31(19):7701-7718. doi: 10.1175/JCLI-D-17-0327.1

    CrossRef Google Scholar

    [102] Xiao M Z, Zhang Q, Singh V P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China[J]. International Journal of Climatology, 2015, 35(12):3556-3567. doi: 10.1002/joc.4228

    CrossRef Google Scholar

    [103] Wang L, Chen W, Huang R H. Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon[J]. Geophysical Research Letters, 2008, 35(20):L20702.

    Google Scholar

    [104] Sung M K, Kwon W T, Baek H J, et al. A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation[J]. Geophysical Research Letters, 2006, 33(21):L21713.

    Google Scholar

    [105] Olsen J, Anderson N J, Knudsen M F. Variability of the North Atlantic Oscillation over the past 5, 200 years[J]. Nature Geoscience, 2012, 5(11):808-812. doi: 10.1038/ngeo1589

    CrossRef Google Scholar

    [106] Chen C Z, Zhao W W, Zhang X J. Pacific Decadal Oscillation-like variability at a millennial timescale during the Holocene[J]. Global and Planetary Change, 2021, 199:103448. doi: 10.1016/j.gloplacha.2021.103448

    CrossRef Google Scholar

    [107] Wang J L, Yang B, Qin C, et al. Spatial patterns of moisture variations across the Xizang Plateau during the past 700 years and their relationship with Atmospheric Oscillation modes[J]. International Journal of Climatology, 2014, 34(3):728-741. doi: 10.1002/joc.3715

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(1484) PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint