2024 Vol. 44, No. 2
Article Contents

LIN Xinru, XIAO Guoqiao, YANG Jilong, PAN Qing, ZHAO Qingyu, LIANG Meiyan. The Yellow River never flows into the sea through the Yongding River[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 46-54. doi: 10.16562/j.cnki.0256-1492.2024013103
Citation: LIN Xinru, XIAO Guoqiao, YANG Jilong, PAN Qing, ZHAO Qingyu, LIANG Meiyan. The Yellow River never flows into the sea through the Yongding River[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 46-54. doi: 10.16562/j.cnki.0256-1492.2024013103

The Yellow River never flows into the sea through the Yongding River

More Information
  • As the second longest river in China, the formation and evolution of the Yellow River is of great significance to the evolution of geomorphic pattern and paleoclimate change in China. Since the 19th century, scholars have put forward a hypothesis that the Yellow River once entered the sea from Hetao Basin to the east through the Yongding River before entering the sea along the Sanmen Gorge. This imaginary river can be called "North proto-Yellow River" and has wide influence in the field of geography. However, there has been little evidence to definitively confirm or disprove it. In this paper, this hypothesis was discussed based on recently published data of the boreholes in the North China Plain, the sedimentary evidence in the Fenwei Basin, and the geomorphic evidence in the Sanmen Gorge. These lines of evidence show that no materials from the Upper and Middle reaches of the Yellow River had been transported to these boreholes located in the alluvial fan of the Yongding River and along the coast of Bohai Bay before 1.6 Ma, indicating that the Sanmen Gorge and the North proto-Yellow River were not opening at this time. The materials from the Upper and Middle reaches of the Yellow River began to enter the Bohai Bay after 1.6 Ma, and the alluvial fan of the Yongding River still lacked materials from the Upper and Middle reaches of the Yellow River. Combined with the sedimentary evidence from the Sanmen Formation in the Fenwei Basin where the lacustrine depositions rapidly ended and changed to loess depositions at about 1.6 Ma, it could be concluded that the Yellow River was not yet fully connected before 1.6 Ma, and it entered the North China Plain through Sanmen Gorge, and thus the Yellow River never flowed into the sea through the Yongding River.

  • 加载中
  • [1] 朱照宇. 黄河中游河流阶地的形成与水系演化[J]. 地理学报, 1989, 44(4):429-440 doi: 10.3321/j.issn:0375-5444.1989.04.007

    CrossRef Google Scholar

    ZHU Zhaoyu. The formation of river terraces and evolution of drainage system in the middle Yellow River[J]. Acta Geographica Sinica, 1989, 44(4):429-440.] doi: 10.3321/j.issn:0375-5444.1989.04.007

    CrossRef Google Scholar

    [2] Li J J, Fang X M, Ma H Z, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic[J]. Science in China (Series D), 1996, 39(4):380-390.

    Google Scholar

    [3] Lin A M, Yang Z Y, Sun Z M, et al. How and when did the Yellow River develop its square bend?[J]. Geology, 2001, 29(10):951-954. doi: 10.1130/0091-7613(2001)029<0951:HAWDTY>2.0.CO;2

    CrossRef Google Scholar

    [4] 潘保田, 王均平, 高红山, 等. 从三门峡黄河阶地的年代看黄河何时东流入海[J]. 自然科学进展, 2005, 15(6): 700-705

    Google Scholar

    PAN Baotian, WANG Junping, GAO Hongshan, et al. Terrace dating as an archive of the run-through of the Sanmen Gorges[J]. Progress in Natural Science, 2005, 15(12): 1096-1103.]

    Google Scholar

    [5] Pan B T, Wang J P, Gao H S, et al. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 2005, 50(7):657-664. doi: 10.1360/03wd0290

    CrossRef Google Scholar

    [6] Jiang F C, Fu J L, Wang S B, et al. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 2007, 175(1):62-70. doi: 10.1016/j.quaint.2007.03.022

    CrossRef Google Scholar

    [7] Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration[J]. Nature Geoscience, 2010, 3(3):209-213. doi: 10.1038/ngeo777

    CrossRef Google Scholar

    [8] 袁宝印, 汤国安, 周力平, 等. 新生代构造运动对黄土高原地貌分异与黄河形成的控制作用[J]. 第四纪研究, 2012, 32(5):829-838 doi: 10.3969/j.issn.1001-7410.2012.05.01

    CrossRef Google Scholar

    YUAN Baoying, TANG Guoan, ZHOU Liping, et al. Control action on the geomorphic differentiation in loess plateau and the formation of Yellow River by Cenozoic tectogenesis[J]. Quaternary Sciences, 2012, 32(5):829-838.] doi: 10.3969/j.issn.1001-7410.2012.05.01

    CrossRef Google Scholar

    [9] Kong P, Jia J, Zheng Y. Time constraints for the Yellow River traversing the Sanmen Gorge[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(2):395-407. doi: 10.1002/2013GC004912

    CrossRef Google Scholar

    [10] Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago[J]. Scientific Reports, 2017, 7(1):2827. doi: 10.1038/s41598-017-03140-x

    CrossRef Google Scholar

    [11] Li B F, Sun D H, Xu W H, et al. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River[J]. Quaternary Science Reviews, 2017, 156:69-89. doi: 10.1016/j.quascirev.2016.11.023

    CrossRef Google Scholar

    [12] Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J]. Quaternary Science Reviews, 2017, 166:324-338. doi: 10.1016/j.quascirev.2017.02.026

    CrossRef Google Scholar

    [13] Xiao G Q, Sun Y Q, Yang J L, et al. Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546:109691. doi: 10.1016/j.palaeo.2020.109691

    CrossRef Google Scholar

    [14] Xiao G Q, Pan Q, Zhao Q Y, et al. Early Pleistocene integration of the Yellow River II: Evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577:110550. doi: 10.1016/j.palaeo.2021.110550

    CrossRef Google Scholar

    [15] Wang X, Hu G, Saito Y, et al. Did the modern Yellow River form at the Mid-Pleistocene transition?[J]. Science Bulletin, 2022, 67(15):1603-1610. doi: 10.1016/j.scib.2022.06.003

    CrossRef Google Scholar

    [16] Yang J L, Yuan H F, Hu Y Z, et al. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River[J]. Geomorphology, 2022, 401:108077. doi: 10.1016/j.geomorph.2021.108077

    CrossRef Google Scholar

    [17] Shen Y F, Liang M Y, Wu J X, et al. Detrital-zircon evidence for the origin of the late Quaternary loess in Qingzhou, Shandong Province and its implications for the evolution of the Yellow River[J]. Journal of Earth Science, 2022, 33(1):205-214. doi: 10.1007/s12583-021-1489-9

    CrossRef Google Scholar

    [18] Pumpelly R. Geological Researches in China, Mongolia, and Japan: During the Years 1862-1865[M]. Washington: Smithsonian Institution Press, 1866.

    Google Scholar

    [19] Clapp F G. The Hwang Ho, Yellow River[J]. Geographical Review, 1922, 12(1):1-18. doi: 10.2307/208653

    CrossRef Google Scholar

    [20] Kohler G. Der Hwang Ho, eine physiographie[J]. The Geographical Journal, 1930, 75(5):466-467.

    Google Scholar

    [21] 王竹泉. 黄河河道成因考[J]. 科学, 1925, 10(2):165-173

    Google Scholar

    WANG Zhuquan. Research on the formation reasons of the Yellow River channel[J]. Science, 1925, 10(2):165-173.]

    Google Scholar

    [22] Teilhard de Chardin P, Young C C. Preliminary observations on the Pre-Loessic and Post-Pontian formations in Western Shansi and Northern Shensi[J]. Memoirs of the Geological Survey of China:Series A, 1930, 8:1-37.

    Google Scholar

    [23] Young C C, Bien M N. Cenozoic geology of the Kaolan-Yungteng area of central Kansu[J]. Bulletin of the Geological Society of China, 1937, 16:221-260.

    Google Scholar

    [24] 林旭, 刘海金, 刘静, 等. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束[J]. 地质学报, 2022, 96(7):2506-2518 doi: 10.3969/j.issn.0001-5717.2022.07.017

    CrossRef Google Scholar

    LIN Xu, LIU Haijin, LIU Jing, et al. The Yellow River did not enter the Bohai Bay Basin during the Miocene: Constraints from detrital zircon U-Pb ages[J]. Acta Geologica Sinica, 2022, 96(7):2506-2518.] doi: 10.3969/j.issn.0001-5717.2022.07.017

    CrossRef Google Scholar

    [25] Richthofen B F. II. —On the mode of origin of the loess[J]. Geological Magazine, 1882, 9(7):293-305. doi: 10.1017/S001675680017164X

    CrossRef Google Scholar

    [26] Pumpelly R. The relation of secular rock-disintegration to loess, glacial drift and rock basins[J]. American Journal of Science and Arts, 1879, 17(3):133-144.

    Google Scholar

    [27] Lee J S. An outline of Chinese geology[J]. Geological Magazine, 1921, 58(7):324-329. doi: 10.1017/S001675680008910X

    CrossRef Google Scholar

    [28] 丁骕. 黄河研究资料汇编第三种[G]. 南京: 南京水利实验处, 1949

    Google Scholar

    DING Su. The Yellow River Research Data Compilation(3)[G]. Nanjing: Nanjing Institute of Hydraulic Research, 1949.]

    Google Scholar

    [29] 李容全. 黄河、永定河发育历史与流域新生代古湖演变间的相互关系[J]. 北京师范大学学报:自然科学版, 1988(4):84-93

    Google Scholar

    LI Rongquan. The relationship between developments of the Yellow River and the Yongding River, and the evolution of fossil lake of drainage basin in the Cenozoic era[J]. Journal of Beijing Normal University:Natural Science, 1988(4):84-93.]

    Google Scholar

    [30] 葛肖虹, 王敏沛. 西去泥河湾——解读古人类与燕山隆升的历史[J]. 自然杂志, 2010, 32(5):294-298

    Google Scholar

    GE Xiaohong, WANG Minpei. Go west to Nihewan——unscrambling the history of ancient human and the uplift of Yanshan Mountain[J]. Chinese Journal of Nature, 2010, 32(5):294-298.]

    Google Scholar

    [31] Yang S Y, Li C X, Yokoyama K. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 2006, 245(3-4):762-776. doi: 10.1016/j.jpgl.2006.03.042

    CrossRef Google Scholar

    [32] Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7556-7561.

    Google Scholar

    [33] Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2660-2673. doi: 10.1016/j.gca.2009.02.007

    CrossRef Google Scholar

    [34] 许欢. 华北北部侏罗—白垩过渡期陆相红层及其古地理、古生态和构造演化[D]. 中国地质科学院博士学位论文, 2016

    Google Scholar

    XU Huan. Jurassic-Cretaceous transition terrestrial red beds in northern North China and their regional paleogeography, paleoecology, and tectonic evolution[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2016.]

    Google Scholar

    [35] 耿显雷, 高山, 陈晨. 华北克拉通东部及苏鲁造山带的地壳生长: 来自现代河流碎屑锆石的U-Pb定年和Hf同位素证据[J]. 地球科学, 2011, 36(3):483-499

    Google Scholar

    GENG Xianlei, GAO Shan, CHEN Chen. Crustal growth of the eastern North China Craton and Sulu Orogen as revealed by U-Pb dating and Hf isotopes of detrital zircons from modern rivers[J]. Earth Science, 2011, 36(3):483-499.]

    Google Scholar

    [36] Li H Y, Xu Y G, Liu Y M, et al. Detrital zircons reveal no Jurassic plateau in the eastern North China Craton[J]. Gondwana Research, 2013, 24(2):622-634. doi: 10.1016/j.gr.2012.12.007

    CrossRef Google Scholar

    [37] Diwu C, Sun Y, Zhang H, et al. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: constraints from detrital zircon U–Pb ages[J]. Journal of Asian Earth Sciences, 2012, 47:107-122. doi: 10.1016/j.jseaes.2011.07.012

    CrossRef Google Scholar

    [38] Li Z Q, Li F J, Chen Z A, et al. Provenance of late Mesozoic strata and tectonic implications for the southwestern Ordos Basin, North China: evidence from detrital zircon U−Pb geochronology and Hf isotopes[J]. Journal of Earth Science, 2022, 33(2):373-394. doi: 10.1007/s12583-021-1450-y

    CrossRef Google Scholar

    [39] 王伟, 李方林, 鲍征宇. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约[J]. 地质科技情报, 2007, 26(5):35-44

    Google Scholar

    WANG Wei, LI Fanglin, BAO Zhengyu. U-Pb constraints on provenance and evolution of middle to late Triassic sediment in Songpan-Garze Basin[J]. Geological Science and Technology Information, 2007, 26(5):35-44.]

    Google Scholar

    [40] 崔加伟, 郑有业, 田立明, 等. 松潘—甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征: 对物源及构造环境的启示[J]. 矿物岩石地球化学通报, 2016, 35(4):719-742 doi: 10.3969/j.issn.1007-2802.2016.04.013

    CrossRef Google Scholar

    CUI Jiawei, ZHANG Youye, TIAN Liming, et al. Geochemical characteristics and zircon U-Pb ages of the Bayankalashan Group in the Ganglong area of the northern Songpan-Ganzi Orogenic Belt: Implication for its provenance and tectonic environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4):719-742.] doi: 10.3969/j.issn.1007-2802.2016.04.013

    CrossRef Google Scholar

    [41] Nie J S, Stevens T, Rittner M, et al. Loess Plateau storage of Northeastern Xizang Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6:8511. doi: 10.1038/ncomms9511

    CrossRef Google Scholar

    [42] 刘护军, 薛祥煦, 李永项. 渭河盆地渭南段古三门湖的盐度估算[J]. 西北大学学报:自然科学版, 2006, 36(1):112-114

    Google Scholar

    LIU Hujun, XUE Xiangxu, LI Yongxiang. Calculation on the paleosalinity of the ancient Sanmen Lake in the Weinan area of Weihe River Basin[J]. Journal of Northwest University:Natural Science Edition, 2006, 36(1):112-114.]

    Google Scholar

    [43] 汪品先, 王乃文, 鲍金松. 汾渭盆地新生代有孔虫的发现及其意义[J]. 地质论评, 1982, 28(2):93-100 doi: 10.3321/j.issn:0371-5736.1982.02.001

    CrossRef Google Scholar

    WANG Pinxian, WANG Naiwen, BAO Jinsong. Discovery of the Cenozoic foraminifera in the Fen-Wei Basin and its significance[J]. Geological Review, 1982, 28(2):93-100.] doi: 10.3321/j.issn:0371-5736.1982.02.001

    CrossRef Google Scholar

    [44] 王强, 王景哲. 在山西发现中华美花介Sinocytheridea[J]. 地层学杂志, 1982, 6(3):234-236

    Google Scholar

    WANG Qiang, WANG Jingzhe. Discovery of the Sinocytheridea in Shanxi Province[J]. Journal of Stratigraphy, 1982, 6(3):234-236.]

    Google Scholar

    [45] Wang Q, Li C G, Tian G Q, et al. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China Series D:Earth Sciences, 2002, 45(2):110-122. doi: 10.1007/BF02879788

    CrossRef Google Scholar

    [46] Yan J Y, Hu J M, Gong W B, et al. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 2020, 55(11):7415-7428. doi: 10.1002/gj.3744

    CrossRef Google Scholar

    [47] Rits D S, Prins M A, Troelstra S R, et al. Facies analysis of the Middle and Late Quaternary sediment infill of the northern Weihe Basin, Central China[J]. Journal of Quaternary Science, 2016, 31(2):152-165. doi: 10.1002/jqs.2853

    CrossRef Google Scholar

    [48] Zhu R X, An Z S, Potts R, et al. Magnetostratigraphic dating of early humans in China[J]. Earth-Science Reviews, 2003, 61(3-4):341-359. doi: 10.1016/S0012-8252(02)00132-0

    CrossRef Google Scholar

    [49] 李有利, 史兴民, 傅建利, 等. 山西南部1.2 MaBP 的地貌转型事件[J]. 地理科学, 2004, 24(3):292-297 doi: 10.3969/j.issn.1000-0690.2004.03.007

    CrossRef Google Scholar

    LI Youli, SHI Xingmin, FU Jianli, et al. Geomorphic transformational event around 1.2 MaBP in the southern Shanxi Province[J]. Scientia Geographica Sinica, 2004, 24(3):292-297.] doi: 10.3969/j.issn.1000-0690.2004.03.007

    CrossRef Google Scholar

    [50] 孙建中, 赵景波, 魏明建, 等. 武家堡剖面古地磁新资料[J]. 水文地质工程地质, 1988(5):44-48,36

    Google Scholar

    SUN Jianzhong, ZHAO Jingbo, WEI Mingjian, et al. New paleomagnetic data from Wujiabao section[J]. Hydrogeology and Engineering Geology, 1988(5):44-48,36.]

    Google Scholar

    [51] 宁强强. 渭南钻孔磁化率和粒度记录的晚新生代气候环境变化历史[D]. 东华理工大学硕士学位论文, 2018

    Google Scholar

    NING Qiangqiang. Late Cenozoic climate change in Weinan area inferred from magnetic susceptibility and grain size of drill cores sediments[D]. Master Dissertation of East China University of Technology, 2018.]

    Google Scholar

    [52] 葛同明, 樊利民, 徐行, 等. 渭南阎村W7孔岩心样品的古地磁学研究[J]. 海洋地质与第四纪地质, 1991, 11(4):59-71

    Google Scholar

    GE Tongming, FAN Limin, XU Xing, et al. Magnetostratigraphic study for borehole W7 from Yancun, Weinan[J]. Marine Geology & Quaternary Geology, 1991, 11(4):59-71.]

    Google Scholar

    [53] 胡巍, 岳乐平, 田新红. 渭南沋河宋家北沟剖面磁性地层学研究[J]. 陕西地质, 1993, 11(2):26-32

    Google Scholar

    HU Wei, YUE Leping, TIAN Xinhong. On the magnetostratigraphy of the Songjia-Beigou section, Youhe, Weinan[J]. Geology of Shaanxi, 1993, 11(2):26-32.]

    Google Scholar

    [54] Han J, Fyfe W S, Longstaffe F J, et al. Pliocene-pleistocene climatic change recorded in fluviolacustrine sediments in central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135(1-4):27-39. doi: 10.1016/S0031-0182(97)00019-9

    CrossRef Google Scholar

    [55] Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451:84-96. doi: 10.1016/j.palaeo.2016.03.012

    CrossRef Google Scholar

    [56] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144:1-15. doi: 10.1016/j.quascirev.2016.05.025

    CrossRef Google Scholar

    [57] 崔之久, 伍永秋, 刘耕年, 等. 关于“昆仑-黄河运动”[J]. 中国科学(D辑: 地球科学), 1998, 28(1): 53-59

    Google Scholar

    CUI Zhijiu, WU Yongqiu, LIU Gengnian, et al. On Kunlun-Yellow River tectonic movement[J]. Science in China Series D: Earth Sciences, 1998, 41(6): 592-600.]

    Google Scholar

    [58] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    Google Scholar

    [59] Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831):891-897. doi: 10.1038/35073504

    CrossRef Google Scholar

    [60] Davis W M. Baselevel, grade and peneplain[J]. The Journal of Geology, 1902, 10(1):77-111. doi: 10.1086/620982

    CrossRef Google Scholar

    [61] Willis B. Physiography of northwestern China[G]. Washington: Carnegie Institution of Washington, 1907.

    Google Scholar

    [62] Barbour G B. Pleistocene history of the Huangho[J]. Geological Society of America Bulletin, 1933, 44(6):1143-1160. doi: 10.1130/GSAB-44-1143

    CrossRef Google Scholar

    [63] Xiong J G, Li Y L, Zhong Y Z, et al. Paleomagnetic age of the Tangxian planation surface, northwestern Zhongtiao Shan of the Shanxi Graben System, North China[J]. Geomorphology, 2017, 283:17-31. doi: 10.1016/j.geomorph.2017.01.020

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1231) PDF downloads(185) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint