2025 Vol. 45, No. 2
Article Contents

QIN Xiuling, CHANG Hong, GUAN Chong. Mineralogical characteristics and paleoclimatic significance of the Miocene deposit in the northwestern Qaidam Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 177-188. doi: 10.16562/j.cnki.0256-1492.2024010901
Citation: QIN Xiuling, CHANG Hong, GUAN Chong. Mineralogical characteristics and paleoclimatic significance of the Miocene deposit in the northwestern Qaidam Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 177-188. doi: 10.16562/j.cnki.0256-1492.2024010901

Mineralogical characteristics and paleoclimatic significance of the Miocene deposit in the northwestern Qaidam Basin

More Information
  • The Middle Miocene Climatic Optimum (MMCO) is a short-term climate warming event interrupting the background of Cenozoic climate cooling. Study on the environmental characteristics based on sediments is important for predicting the trend of climate change with the global warming in the future. There are few records of the MMCO in the extreme arid interior of Asia, and the controlling factors of paleoclimate changes are still unclear. The mineral assemblages of the Miocene sediments from the Huatugou section in the northern Qaidam Basin were analyzed, the regional response to the global climate event and the environmental change in the Qaidam Basin during early-middle Miocene were revealed, and the paleoclimate evolution including the shifting and driving mechanisms of relative moisture index of clay minerals were focused. Results show that during the early-middle Miocene in Qaidam Basin, the climate during 17.2~15.2 Ma was the warmest and wettest, which should belong to the MMCO and mainly affected by the global climate. The climate in the basin began to fluctuate and became dried during 15.2~12.4 Ma. The basin was affected by the regional geological structure and the Middle Miocene cooling event. From 12.4 to 11.3 Ma, Qaidam Basin continued to dry out, mainly under the influence of global climate again. We pointed out that the global climate change trend and regional tectonic movement influenced the early and middle Miocene climate in Qaidam Basin.

  • 加载中
  • [1] Kürschner W M, Kvaček Z, Dilcher D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2):449-453.

    Google Scholar

    [2] Greenop R, Foster G L, Wilson P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability[J]. Paleoceanography, 2014, 29(9):845-853. doi: 10.1002/2014PA002653

    CrossRef Google Scholar

    [3] Flower B P, Kennett J P. The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3-4):537-555. doi: 10.1016/0031-0182(94)90251-8

    CrossRef Google Scholar

    [4] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [5] Böhme M. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(3-4):389-401. doi: 10.1016/S0031-0182(03)00367-5

    CrossRef Google Scholar

    [6] Sun J M, Zhang Z Q. Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China[J]. Global and Planetary Change, 2008, 64(1-2):53-68. doi: 10.1016/j.gloplacha.2008.09.001

    CrossRef Google Scholar

    [7] Zan J B, Fang X M, Yan M D, et al. Lithologic and rock magnetic evidence for the Mid-Miocene Climatic Optimum recorded in the sedimentary archive of the Xining Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 431:6-14. doi: 10.1016/j.palaeo.2015.04.024

    CrossRef Google Scholar

    [8] Hahn D G, Manabe S. The role of mountains in the South Asian monsoon circulation[J]. Journal of the Atmospheric Sciences, 1975, 32(8):1515-1541. doi: 10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2

    CrossRef Google Scholar

    [9] 任雪萍. 柴达木盆地晚新生代古气候和化学风化研究[D]. 兰州大学博士学位论文, 2021

    Google Scholar

    REN Xueping. Late Cenozoic paleoclimate and silicate chemical weathering research in the Qaidam Basin[D]. Doctor Dissertation of Lanzhou University, 2021.]

    Google Scholar

    [10] Tang H, Micheels A, Eronen J T, et al. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments[J]. Climate Dynamics, 2013, 40(5-6):1531-1549. doi: 10.1007/s00382-012-1603-x

    CrossRef Google Scholar

    [11] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122. doi: 10.1038/359117a0

    CrossRef Google Scholar

    [12] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66. doi: 10.1038/35075035

    CrossRef Google Scholar

    [13] Miao Y F, Herrmann M, Wu F L, et al. What controlled Mid-Late Miocene long-term aridification in Central Asia? —Global cooling or Tibetan Plateau uplift: a review[J]. Earth-Science Reviews, 2012, 112(3-4):155-172. doi: 10.1016/j.earscirev.2012.02.003

    CrossRef Google Scholar

    [14] 方亚会, 方小敏, 昝金波, 等. 西宁盆地总有机碳同位素记录的~39Ma亚洲内陆急剧干旱事件[J]. 地球环境学报, 2019, 10(5):453-464

    Google Scholar

    FANG Yahui, FANG Xiaomin, ZAN Jinbo, et al. An Asian inland aridification enhancement event at ~39 Ma recorded by total organic carbon isotopes from Xining Basin[J]. Journal of Earth Environment, 2019, 10(5):453-464.]

    Google Scholar

    [15] Bougeois L, Dupont-Nivet G, de Rafélis M, et al. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters[J]. Earth and Planetary Science Letters, 2018, 485:99-110. doi: 10.1016/j.jpgl.2017.12.036

    CrossRef Google Scholar

    [16] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128):635-638. doi: 10.1038/nature05516

    CrossRef Google Scholar

    [17] Li S E, Liu P X, Guan P, et al. Eocene to Miocene paleoclimate reconstruction of the northern Tibetan Plateau: constraints from mineralogy, carbon and oxygen isotopes of lacustrine carbonates in the western Qaidam Basin[J]. Frontiers in Earth Science, 2023, 11:1217304. doi: 10.3389/feart.2023.1217304

    CrossRef Google Scholar

    [18] Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1-2):293-306. doi: 10.1016/j.jpgl.2007.03.042

    CrossRef Google Scholar

    [19] Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288(3-4):539-550. doi: 10.1016/j.jpgl.2009.10.016

    CrossRef Google Scholar

    [20] Dong J B, Liu Z H, An Z S, et al. Mid-Miocene C4 expansion on the Chinese Loess Plateau under an enhanced Asian summer monsoon[J]. Journal of Asian Earth Sciences, 2018, 158:153-159. doi: 10.1016/j.jseaes.2018.02.014

    CrossRef Google Scholar

    [21] Lebreton-Anberrée J, Li S H, Li S F, et al. Lake geochemistry reveals marked environmental change in Southwest China during the Mid Miocene Climatic Optimum[J]. Science Bulletin, 2016, 61(11):897-910. doi: 10.1007/s11434-016-1095-x

    CrossRef Google Scholar

    [22] Miao Y F, Fang X M, Liu Y S, et al. Late Cenozoic pollen concentration in the western Qaidam Basin, northern Tibetan Plateau, and its significance for paleoclimate and tectonics[J]. Review of Palaeobotany and Palynology, 2016, 231:14-22. doi: 10.1016/j.revpalbo.2016.04.008

    CrossRef Google Scholar

    [23] Guan C, Chang H, Yan M D, et al. Rock magnetic constraints for the Mid-Miocene Climatic Optimum from a high-resolution sedimentary sequence of the northwestern Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532:109263. doi: 10.1016/j.palaeo.2019.109263

    CrossRef Google Scholar

    [24] Song C H, Hu S H, Han W X, et al. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395:67-76. doi: 10.1016/j.palaeo.2013.12.022

    CrossRef Google Scholar

    [25] Miao Y F, Fang X M, Herrmann M, et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1-2):30-38. doi: 10.1016/j.palaeo.2010.10.026

    CrossRef Google Scholar

    [26] Nie J S, Ren X P, Saylor J E, et al. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau[J]. GSA Bulletin, 2020, 132(1-2):310-320. doi: 10.1130/B35175.1

    CrossRef Google Scholar

    [27] Miao Y F, Fang X M, Wu F L, et al. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records[J]. Climate of the Past, 2013, 9(4):1863-1877. doi: 10.5194/cp-9-1863-2013

    CrossRef Google Scholar

    [28] He P J, Song C H, Wang Y D, et al. Cenozoic deformation history of the Qilian Shan (northeastern Tibetan Plateau) constrained by detrital apatite fission-track thermochronology in the northeastern Qaidam Basin[J]. Tectonophysics, 2018, 749:1-11. doi: 10.1016/j.tecto.2018.10.017

    CrossRef Google Scholar

    [29] Wang W T, Zheng W J, Zhang P Z, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8:15887. doi: 10.1038/ncomms15887

    CrossRef Google Scholar

    [30] Zhuang G S, Zhang Y G, Hourigan J, et al. Microbial and geochronologic constraints on the neogene paleotopography of northern Tibetan plateau[J]. Geophysical Research Letters, 2019, 46(3):1312-1319. doi: 10.1029/2018GL081505

    CrossRef Google Scholar

    [31] Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39(4):359-362. doi: 10.1130/G31356.1

    CrossRef Google Scholar

    [32] Wang W T, Zhang P Z, Pang J Z, et al. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4):2235-2257. doi: 10.1002/2015JB012689

    CrossRef Google Scholar

    [33] Lin X, Zheng D W, Sun J M, et al. Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene[J]. Journal of Asian Earth Sciences, 2015, 111:302-311. doi: 10.1016/j.jseaes.2015.07.007

    CrossRef Google Scholar

    [34] Wang W T, Zheng D W, Li C P, et al. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 2020, 39(4):e2019TC005705. doi: 10.1029/2019TC005705

    CrossRef Google Scholar

    [35] Mao L G, Xiao A C, Wu L, et al. Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin, NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains[J]. Science China Earth Sciences, 2014, 57(11):2726-2739. doi: 10.1007/s11430-014-4951-z

    CrossRef Google Scholar

    [36] Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault[J]. Tectonics, 2003, 22(5):1052.

    Google Scholar

    [37] Sun J M, Zhu R X, An Z S. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235(3-4):641-653. doi: 10.1016/j.jpgl.2005.04.034

    CrossRef Google Scholar

    [38] Wu L, Xiao A C, Yang S F, et al. Two-stage evolution of the Altyn Tagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China[J]. Terra Nova, 2012, 24(5):387-395. doi: 10.1111/j.1365-3121.2012.01077.x

    CrossRef Google Scholar

    [39] Ritts B D, Yue Y J, Graham S A, et al. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308(5):657-678. doi: 10.2475/05.2008.01

    CrossRef Google Scholar

    [40] Chang H, Li L Y, Qiang X K, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 430:271-283. doi: 10.1016/j.jpgl.2015.08.029

    CrossRef Google Scholar

    [41] 陈涛, 王欢, 张祖青, 等. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志, 2003, 22(4):416-420 doi: 10.3969/j.issn.1000-6524.2003.04.022

    CrossRef Google Scholar

    CHEN Tao, WANG Huan, ZHANG Zuqing, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4):416-420.] doi: 10.3969/j.issn.1000-6524.2003.04.022

    CrossRef Google Scholar

    [42] 汤艳杰, 贾建业, 谢先德. 粘土矿物的环境意义[J]. 地学前缘, 2002, 9(2):337-344 doi: 10.3321/j.issn:1005-2321.2002.02.011

    CrossRef Google Scholar

    TANG Yanjie, JIA Jianye, XIE Xiande. Environment significance of clay minerals[J]. Earth Science Frontiers, 2002, 9(2):337-344.] doi: 10.3321/j.issn:1005-2321.2002.02.011

    CrossRef Google Scholar

    [43] 脱世博. 柴达木盆地东北部中新世沉积物粘土矿物变化特征与化学风化及其古气候意义[D]. 兰州大学硕士学位论文, 2013

    Google Scholar

    TUO Shibo. Characteristic changes of the clay minerals, chemical weathering and paleoclimatic significance in the Miocene, Northeastern of the Qaidam Basin[D]. Master Dissertation of Lanzhou University, 2013.]

    Google Scholar

    [44] Winkler A, Wolf-Welling T, Stattegger K, et al. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG)[J]. International Journal of Earth Sciences, 2002, 91(1):133-148. doi: 10.1007/s005310100199

    CrossRef Google Scholar

    [45] Cheng F, Jolivet M, Fu S T, et al. Northward growth of the Qimen Tagh Range: a new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin[J]. Tectonophysics, 2014, 632:32-47. doi: 10.1016/j.tecto.2014.05.034

    CrossRef Google Scholar

    [46] Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction[J]. GSA Bulletin, 2008, 120(7-8):847-876. doi: 10.1130/B26232.1

    CrossRef Google Scholar

    [47] Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range[M]//Sears J W, Harms T A, Evenchick C A. Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price. Boulder: Geological Society of America, 2007: 369-390.

    Google Scholar

    [48] Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1):1-47. doi: 10.1046/j.1365-246X.1998.00567.x

    CrossRef Google Scholar

    [49] 孟庆泉. 柴达木盆地北缘晚新生代精细磁性地层学与沉积对构造的响应[D]. 兰州大学博士学位论文, 2008

    Google Scholar

    MENG Qingquan. High resolution magnetostratigraphy in the north of Qaidam basin and the sedimentary response to tectonic since late cenozoic[D]. Doctor Dissertation of Lanzhou University, 2008.]

    Google Scholar

    [50] Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China[J]. Tectonics, 1998, 17(6):823-842. doi: 10.1029/98TC02764

    CrossRef Google Scholar

    [51] Wang E C E, Xu F Y, Zhou J X, et al. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. GSA Bulletin, 2006, 118(3-4):349-365. doi: 10.1130/B25778.1

    CrossRef Google Scholar

    [52] Rieser A B, Neubauer F, Liu Y J, et al. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: tectonic vs. climatic control[J]. Sedimentary Geology, 2005, 177(1-2):1-18. doi: 10.1016/j.sedgeo.2005.01.012

    CrossRef Google Scholar

    [53] Bush M A, Saylor J E, Horton B K, et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 2016, 8(1):58-82. doi: 10.1130/L449.1

    CrossRef Google Scholar

    [54] Xia W C, Zhang N, Yuan X P, et al. Cenozoic Qaidam basin, China: a stronger tectonic inversed, extensional rifted basin[J]. AAPG Bulletin, 2001, 85(4):715-736.

    Google Scholar

    [55] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [56] Gingele F X, De Deckker P, Hillenbrand C D. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses: clay mineral evidence[J]. Australian Journal of Earth Sciences, 2001, 48(6):867-874. doi: 10.1046/j.1440-0952.2001.00905.x

    CrossRef Google Scholar

    [57] Bain D C. The weathering of chloritic minerals in some scottish soils[J]. European Journal of Soil Science, 1977, 28(1):144-164. doi: 10.1111/j.1365-2389.1977.tb02303.x

    CrossRef Google Scholar

    [58] Yemane K, Kahr G, Kelts K. Imprints of post-glacial climates and palaeogeography in the detrital clay mineral assemblages of an Upper Permian fluviolacustrine Gondwana deposit from northern Malawi[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125(1-4):27-49. doi: 10.1016/S0031-0182(96)00023-5

    CrossRef Google Scholar

    [59] Ye C C, Yang Y B, Fang X M, et al. Evolution of Paleogene weathering intensity in the Qaidam Basin, northeastern Tibetan Plateau: insights from clay geochemistry[J]. CATENA, 2022, 213:106162. doi: 10.1016/j.catena.2022.106162

    CrossRef Google Scholar

    [60] Rieu R, Allen P A, Plötze M, et al. Climatic cycles during a Neoproterozoic "snowball" glacial epoch[J]. Geology, 2007, 35(4):299-302. doi: 10.1130/G23400A.1

    CrossRef Google Scholar

    [61] Wang Z, Nie J S, Wang J P, et al. Testing contrasting models of the formation of the upper Yellow River using heavy-mineral data from the Yinchuan basin drill cores[J]. Geophysical Research Letters, 2019, 46(17-18):10338-10345. doi: 10.1029/2019GL084179

    CrossRef Google Scholar

    [62] 和钟铧, 刘招君, 郭巍. 柴达木盆地北缘大煤沟剖面重矿物分析及其地质意义[J]. 世界地质, 2001, 20(3):279-284,312 doi: 10.3969/j.issn.1004-5589.2001.03.012

    CrossRef Google Scholar

    HE Zhonghua, LIU Zhaojun, GUO Wei. The heavy mineral analysis and its geological significance of Dameigou section in northern Qaidam basin[J]. World Geology, 2001, 20(3):279-284,312.] doi: 10.3969/j.issn.1004-5589.2001.03.012

    CrossRef Google Scholar

    [63] van de Wal R S W, de Boer B, Lourens L J, et al. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years[J]. Climate of the Past, 2011, 7(4):1459-1469. doi: 10.5194/cp-7-1459-2011

    CrossRef Google Scholar

    [64] Song Y G, Wang Q S, An Z S, et al. Mid-Miocene climatic optimum: clay mineral evidence from the red clay succession, Longzhong Basin, Northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512:46-55. doi: 10.1016/j.palaeo.2017.10.001

    CrossRef Google Scholar

    [65] Hui Z C, Zhang J, Ma Z H, et al. Global warming and rainfall: lessons from an analysis of Mid-Miocene climate data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512:106-117. doi: 10.1016/j.palaeo.2018.10.025

    CrossRef Google Scholar

    [66] Tang Z H, Ding Z L, White P D, et al. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan[J]. Earth and Planetary Science Letters, 2011, 302(3-4):439-447. doi: 10.1016/j.jpgl.2010.12.042

    CrossRef Google Scholar

    [67] Hui Z C, Li J J, Xu Q H, et al. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3-4):373-382. doi: 10.1016/j.palaeo.2011.05.043

    CrossRef Google Scholar

    [68] Jiang H C, Ding Z L. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):30-38. doi: 10.1016/j.palaeo.2008.04.016

    CrossRef Google Scholar

    [69] Jia Y X, Wu H B, Zhang W C, et al. Quantitative Cenozoic climatic reconstruction and its implications for aridification of the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567:110244. doi: 10.1016/j.palaeo.2021.110244

    CrossRef Google Scholar

    [70] Wang H T, Wu F L, Yang L Y, et al. Miocene lake evolution in the western Qaidam Basin, northern Tibetan Plateau: evidence from aquatic-plant pollen[J]. Journal of Asian Earth Sciences, 2023, 250:105634. doi: 10.1016/j.jseaes.2023.105634

    CrossRef Google Scholar

    [71] Bao J, Song C H, Yang Y B, et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic[J]. Journal of Asian Earth Sciences, 2019, 170:155-165. doi: 10.1016/j.jseaes.2018.10.018

    CrossRef Google Scholar

    [72] Zhang Z S, Wang H J, Guo Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3-4):317-331. doi: 10.1016/j.palaeo.2006.08.003

    CrossRef Google Scholar

    [73] Page M, Licht A, Dupont-Nivet G, et al. Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse[J]. Geology, 2019, 47(3):203-206. doi: 10.1130/G45480.1

    CrossRef Google Scholar

    [74] Wang X, Carrapa B, Sun Y C, et al. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene[J]. Geology, 2020, 48(7):728-732. doi: 10.1130/G47400.1

    CrossRef Google Scholar

    [75] Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627):788-795. doi: 10.1038/386788a0

    CrossRef Google Scholar

    [76] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15):18409-18427. doi: 10.1029/JD094iD15p18409

    CrossRef Google Scholar

    [77] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. The Journal of Geology, 1993, 101(2):177-190. doi: 10.1086/648215

    CrossRef Google Scholar

    [78] Kaya M Y, Dupont-Nivet G, Proust J N, et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): role of intensified tectonic activity at ca. 41 Ma[J]. Basin Research, 2019, 31(3):461-486. doi: 10.1111/bre.12330

    CrossRef Google Scholar

    [79] Soden B J, Jackson D L, Ramaswamy V, et al. The radiative signature of upper tropospheric moistening[J]. Science, 2005, 310(5749):841-844. doi: 10.1126/science.1115602

    CrossRef Google Scholar

    [80] Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699. doi: 10.1175/JCLI3990.1

    CrossRef Google Scholar

    [81] Guo Z T, Peng S Z, Hao Q Z, et al. Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China[J]. Global and Planetary Change, 2004, 41(3-4):135-145. doi: 10.1016/j.gloplacha.2004.01.002

    CrossRef Google Scholar

    [82] Singh G. History of Aridland vegetation and climate: a global perspective[J]. Biological Reviews, 1988, 63(2):159-195. doi: 10.1111/j.1469-185X.1988.tb00629.x

    CrossRef Google Scholar

    [83] Song Y G, Fang X M, Chen X L, et al. Rock magnetic record of late Neogene red clay sediments from the Chinese Loess Plateau and its implications for East Asian monsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510:109-123. doi: 10.1016/j.palaeo.2017.09.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(23) PDF downloads(3) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint