Citation: | QIN Xiuling, CHANG Hong, GUAN Chong. Mineralogical characteristics and paleoclimatic significance of the Miocene deposit in the northwestern Qaidam Basin[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 177-188. doi: 10.16562/j.cnki.0256-1492.2024010901 |
The Middle Miocene Climatic Optimum (MMCO) is a short-term climate warming event interrupting the background of Cenozoic climate cooling. Study on the environmental characteristics based on sediments is important for predicting the trend of climate change with the global warming in the future. There are few records of the MMCO in the extreme arid interior of Asia, and the controlling factors of paleoclimate changes are still unclear. The mineral assemblages of the Miocene sediments from the Huatugou section in the northern Qaidam Basin were analyzed, the regional response to the global climate event and the environmental change in the Qaidam Basin during early-middle Miocene were revealed, and the paleoclimate evolution including the shifting and driving mechanisms of relative moisture index of clay minerals were focused. Results show that during the early-middle Miocene in Qaidam Basin, the climate during 17.2~15.2 Ma was the warmest and wettest, which should belong to the MMCO and mainly affected by the global climate. The climate in the basin began to fluctuate and became dried during 15.2~12.4 Ma. The basin was affected by the regional geological structure and the Middle Miocene cooling event. From 12.4 to 11.3 Ma, Qaidam Basin continued to dry out, mainly under the influence of global climate again. We pointed out that the global climate change trend and regional tectonic movement influenced the early and middle Miocene climate in Qaidam Basin.
[1] | Kürschner W M, Kvaček Z, Dilcher D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2):449-453. |
[2] | Greenop R, Foster G L, Wilson P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability[J]. Paleoceanography, 2014, 29(9):845-853. doi: 10.1002/2014PA002653 |
[3] | Flower B P, Kennett J P. The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3-4):537-555. doi: 10.1016/0031-0182(94)90251-8 |
[4] | Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693. doi: 10.1126/science.1059412 |
[5] | Böhme M. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(3-4):389-401. doi: 10.1016/S0031-0182(03)00367-5 |
[6] | Sun J M, Zhang Z Q. Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China[J]. Global and Planetary Change, 2008, 64(1-2):53-68. doi: 10.1016/j.gloplacha.2008.09.001 |
[7] | Zan J B, Fang X M, Yan M D, et al. Lithologic and rock magnetic evidence for the Mid-Miocene Climatic Optimum recorded in the sedimentary archive of the Xining Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 431:6-14. doi: 10.1016/j.palaeo.2015.04.024 |
[8] | Hahn D G, Manabe S. The role of mountains in the South Asian monsoon circulation[J]. Journal of the Atmospheric Sciences, 1975, 32(8):1515-1541. doi: 10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2 |
[9] | 任雪萍. 柴达木盆地晚新生代古气候和化学风化研究[D]. 兰州大学博士学位论文, 2021 REN Xueping. Late Cenozoic paleoclimate and silicate chemical weathering research in the Qaidam Basin[D]. Doctor Dissertation of Lanzhou University, 2021.] |
[10] | Tang H, Micheels A, Eronen J T, et al. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments[J]. Climate Dynamics, 2013, 40(5-6):1531-1549. doi: 10.1007/s00382-012-1603-x |
[11] | Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122. doi: 10.1038/359117a0 |
[12] | An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66. doi: 10.1038/35075035 |
[13] | Miao Y F, Herrmann M, Wu F L, et al. What controlled Mid-Late Miocene long-term aridification in Central Asia? —Global cooling or Tibetan Plateau uplift: a review[J]. Earth-Science Reviews, 2012, 112(3-4):155-172. doi: 10.1016/j.earscirev.2012.02.003 |
[14] | 方亚会, 方小敏, 昝金波, 等. 西宁盆地总有机碳同位素记录的~39Ma亚洲内陆急剧干旱事件[J]. 地球环境学报, 2019, 10(5):453-464 FANG Yahui, FANG Xiaomin, ZAN Jinbo, et al. An Asian inland aridification enhancement event at ~39 Ma recorded by total organic carbon isotopes from Xining Basin[J]. Journal of Earth Environment, 2019, 10(5):453-464.] |
[15] | Bougeois L, Dupont-Nivet G, de Rafélis M, et al. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters[J]. Earth and Planetary Science Letters, 2018, 485:99-110. doi: 10.1016/j.jpgl.2017.12.036 |
[16] | Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128):635-638. doi: 10.1038/nature05516 |
[17] | Li S E, Liu P X, Guan P, et al. Eocene to Miocene paleoclimate reconstruction of the northern Tibetan Plateau: constraints from mineralogy, carbon and oxygen isotopes of lacustrine carbonates in the western Qaidam Basin[J]. Frontiers in Earth Science, 2023, 11:1217304. doi: 10.3389/feart.2023.1217304 |
[18] | Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1-2):293-306. doi: 10.1016/j.jpgl.2007.03.042 |
[19] | Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288(3-4):539-550. doi: 10.1016/j.jpgl.2009.10.016 |
[20] | Dong J B, Liu Z H, An Z S, et al. Mid-Miocene C4 expansion on the Chinese Loess Plateau under an enhanced Asian summer monsoon[J]. Journal of Asian Earth Sciences, 2018, 158:153-159. doi: 10.1016/j.jseaes.2018.02.014 |
[21] | Lebreton-Anberrée J, Li S H, Li S F, et al. Lake geochemistry reveals marked environmental change in Southwest China during the Mid Miocene Climatic Optimum[J]. Science Bulletin, 2016, 61(11):897-910. doi: 10.1007/s11434-016-1095-x |
[22] | Miao Y F, Fang X M, Liu Y S, et al. Late Cenozoic pollen concentration in the western Qaidam Basin, northern Tibetan Plateau, and its significance for paleoclimate and tectonics[J]. Review of Palaeobotany and Palynology, 2016, 231:14-22. doi: 10.1016/j.revpalbo.2016.04.008 |
[23] | Guan C, Chang H, Yan M D, et al. Rock magnetic constraints for the Mid-Miocene Climatic Optimum from a high-resolution sedimentary sequence of the northwestern Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532:109263. doi: 10.1016/j.palaeo.2019.109263 |
[24] | Song C H, Hu S H, Han W X, et al. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395:67-76. doi: 10.1016/j.palaeo.2013.12.022 |
[25] | Miao Y F, Fang X M, Herrmann M, et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1-2):30-38. doi: 10.1016/j.palaeo.2010.10.026 |
[26] | Nie J S, Ren X P, Saylor J E, et al. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau[J]. GSA Bulletin, 2020, 132(1-2):310-320. doi: 10.1130/B35175.1 |
[27] | Miao Y F, Fang X M, Wu F L, et al. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records[J]. Climate of the Past, 2013, 9(4):1863-1877. doi: 10.5194/cp-9-1863-2013 |
[28] | He P J, Song C H, Wang Y D, et al. Cenozoic deformation history of the Qilian Shan (northeastern Tibetan Plateau) constrained by detrital apatite fission-track thermochronology in the northeastern Qaidam Basin[J]. Tectonophysics, 2018, 749:1-11. doi: 10.1016/j.tecto.2018.10.017 |
[29] | Wang W T, Zheng W J, Zhang P Z, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8:15887. doi: 10.1038/ncomms15887 |
[30] | Zhuang G S, Zhang Y G, Hourigan J, et al. Microbial and geochronologic constraints on the neogene paleotopography of northern Tibetan plateau[J]. Geophysical Research Letters, 2019, 46(3):1312-1319. doi: 10.1029/2018GL081505 |
[31] | Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39(4):359-362. doi: 10.1130/G31356.1 |
[32] | Wang W T, Zhang P Z, Pang J Z, et al. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4):2235-2257. doi: 10.1002/2015JB012689 |
[33] | Lin X, Zheng D W, Sun J M, et al. Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene[J]. Journal of Asian Earth Sciences, 2015, 111:302-311. doi: 10.1016/j.jseaes.2015.07.007 |
[34] | Wang W T, Zheng D W, Li C P, et al. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 2020, 39(4):e2019TC005705. doi: 10.1029/2019TC005705 |
[35] | Mao L G, Xiao A C, Wu L, et al. Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin, NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains[J]. Science China Earth Sciences, 2014, 57(11):2726-2739. doi: 10.1007/s11430-014-4951-z |
[36] | Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault[J]. Tectonics, 2003, 22(5):1052. |
[37] | Sun J M, Zhu R X, An Z S. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235(3-4):641-653. doi: 10.1016/j.jpgl.2005.04.034 |
[38] | Wu L, Xiao A C, Yang S F, et al. Two-stage evolution of the Altyn Tagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China[J]. Terra Nova, 2012, 24(5):387-395. doi: 10.1111/j.1365-3121.2012.01077.x |
[39] | Ritts B D, Yue Y J, Graham S A, et al. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308(5):657-678. doi: 10.2475/05.2008.01 |
[40] | Chang H, Li L Y, Qiang X K, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 430:271-283. doi: 10.1016/j.jpgl.2015.08.029 |
[41] | 陈涛, 王欢, 张祖青, 等. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志, 2003, 22(4):416-420 doi: 10.3969/j.issn.1000-6524.2003.04.022 CHEN Tao, WANG Huan, ZHANG Zuqing, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4):416-420.] doi: 10.3969/j.issn.1000-6524.2003.04.022 |
[42] | 汤艳杰, 贾建业, 谢先德. 粘土矿物的环境意义[J]. 地学前缘, 2002, 9(2):337-344 doi: 10.3321/j.issn:1005-2321.2002.02.011 TANG Yanjie, JIA Jianye, XIE Xiande. Environment significance of clay minerals[J]. Earth Science Frontiers, 2002, 9(2):337-344.] doi: 10.3321/j.issn:1005-2321.2002.02.011 |
[43] | 脱世博. 柴达木盆地东北部中新世沉积物粘土矿物变化特征与化学风化及其古气候意义[D]. 兰州大学硕士学位论文, 2013 TUO Shibo. Characteristic changes of the clay minerals, chemical weathering and paleoclimatic significance in the Miocene, Northeastern of the Qaidam Basin[D]. Master Dissertation of Lanzhou University, 2013.] |
[44] | Winkler A, Wolf-Welling T, Stattegger K, et al. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG)[J]. International Journal of Earth Sciences, 2002, 91(1):133-148. doi: 10.1007/s005310100199 |
[45] | Cheng F, Jolivet M, Fu S T, et al. Northward growth of the Qimen Tagh Range: a new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin[J]. Tectonophysics, 2014, 632:32-47. doi: 10.1016/j.tecto.2014.05.034 |
[46] | Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction[J]. GSA Bulletin, 2008, 120(7-8):847-876. doi: 10.1130/B26232.1 |
[47] | Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range[M]//Sears J W, Harms T A, Evenchick C A. Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price. Boulder: Geological Society of America, 2007: 369-390. |
[48] | Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1):1-47. doi: 10.1046/j.1365-246X.1998.00567.x |
[49] | 孟庆泉. 柴达木盆地北缘晚新生代精细磁性地层学与沉积对构造的响应[D]. 兰州大学博士学位论文, 2008 MENG Qingquan. High resolution magnetostratigraphy in the north of Qaidam basin and the sedimentary response to tectonic since late cenozoic[D]. Doctor Dissertation of Lanzhou University, 2008.] |
[50] | Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China[J]. Tectonics, 1998, 17(6):823-842. doi: 10.1029/98TC02764 |
[51] | Wang E C E, Xu F Y, Zhou J X, et al. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. GSA Bulletin, 2006, 118(3-4):349-365. doi: 10.1130/B25778.1 |
[52] | Rieser A B, Neubauer F, Liu Y J, et al. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: tectonic vs. climatic control[J]. Sedimentary Geology, 2005, 177(1-2):1-18. doi: 10.1016/j.sedgeo.2005.01.012 |
[53] | Bush M A, Saylor J E, Horton B K, et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 2016, 8(1):58-82. doi: 10.1130/L449.1 |
[54] | Xia W C, Zhang N, Yuan X P, et al. Cenozoic Qaidam basin, China: a stronger tectonic inversed, extensional rifted basin[J]. AAPG Bulletin, 2001, 85(4):715-736. |
[55] | Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717. doi: 10.1038/299715a0 |
[56] | Gingele F X, De Deckker P, Hillenbrand C D. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses: clay mineral evidence[J]. Australian Journal of Earth Sciences, 2001, 48(6):867-874. doi: 10.1046/j.1440-0952.2001.00905.x |
[57] | Bain D C. The weathering of chloritic minerals in some scottish soils[J]. European Journal of Soil Science, 1977, 28(1):144-164. doi: 10.1111/j.1365-2389.1977.tb02303.x |
[58] | Yemane K, Kahr G, Kelts K. Imprints of post-glacial climates and palaeogeography in the detrital clay mineral assemblages of an Upper Permian fluviolacustrine Gondwana deposit from northern Malawi[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125(1-4):27-49. doi: 10.1016/S0031-0182(96)00023-5 |
[59] | Ye C C, Yang Y B, Fang X M, et al. Evolution of Paleogene weathering intensity in the Qaidam Basin, northeastern Tibetan Plateau: insights from clay geochemistry[J]. CATENA, 2022, 213:106162. doi: 10.1016/j.catena.2022.106162 |
[60] | Rieu R, Allen P A, Plötze M, et al. Climatic cycles during a Neoproterozoic "snowball" glacial epoch[J]. Geology, 2007, 35(4):299-302. doi: 10.1130/G23400A.1 |
[61] | Wang Z, Nie J S, Wang J P, et al. Testing contrasting models of the formation of the upper Yellow River using heavy-mineral data from the Yinchuan basin drill cores[J]. Geophysical Research Letters, 2019, 46(17-18):10338-10345. doi: 10.1029/2019GL084179 |
[62] | 和钟铧, 刘招君, 郭巍. 柴达木盆地北缘大煤沟剖面重矿物分析及其地质意义[J]. 世界地质, 2001, 20(3):279-284,312 doi: 10.3969/j.issn.1004-5589.2001.03.012 HE Zhonghua, LIU Zhaojun, GUO Wei. The heavy mineral analysis and its geological significance of Dameigou section in northern Qaidam basin[J]. World Geology, 2001, 20(3):279-284,312.] doi: 10.3969/j.issn.1004-5589.2001.03.012 |
[63] | van de Wal R S W, de Boer B, Lourens L J, et al. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years[J]. Climate of the Past, 2011, 7(4):1459-1469. doi: 10.5194/cp-7-1459-2011 |
[64] | Song Y G, Wang Q S, An Z S, et al. Mid-Miocene climatic optimum: clay mineral evidence from the red clay succession, Longzhong Basin, Northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512:46-55. doi: 10.1016/j.palaeo.2017.10.001 |
[65] | Hui Z C, Zhang J, Ma Z H, et al. Global warming and rainfall: lessons from an analysis of Mid-Miocene climate data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512:106-117. doi: 10.1016/j.palaeo.2018.10.025 |
[66] | Tang Z H, Ding Z L, White P D, et al. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan[J]. Earth and Planetary Science Letters, 2011, 302(3-4):439-447. doi: 10.1016/j.jpgl.2010.12.042 |
[67] | Hui Z C, Li J J, Xu Q H, et al. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3-4):373-382. doi: 10.1016/j.palaeo.2011.05.043 |
[68] | Jiang H C, Ding Z L. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):30-38. doi: 10.1016/j.palaeo.2008.04.016 |
[69] | Jia Y X, Wu H B, Zhang W C, et al. Quantitative Cenozoic climatic reconstruction and its implications for aridification of the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567:110244. doi: 10.1016/j.palaeo.2021.110244 |
[70] | Wang H T, Wu F L, Yang L Y, et al. Miocene lake evolution in the western Qaidam Basin, northern Tibetan Plateau: evidence from aquatic-plant pollen[J]. Journal of Asian Earth Sciences, 2023, 250:105634. doi: 10.1016/j.jseaes.2023.105634 |
[71] | Bao J, Song C H, Yang Y B, et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic[J]. Journal of Asian Earth Sciences, 2019, 170:155-165. doi: 10.1016/j.jseaes.2018.10.018 |
[72] | Zhang Z S, Wang H J, Guo Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3-4):317-331. doi: 10.1016/j.palaeo.2006.08.003 |
[73] | Page M, Licht A, Dupont-Nivet G, et al. Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse[J]. Geology, 2019, 47(3):203-206. doi: 10.1130/G45480.1 |
[74] | Wang X, Carrapa B, Sun Y C, et al. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene[J]. Geology, 2020, 48(7):728-732. doi: 10.1130/G47400.1 |
[75] | Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627):788-795. doi: 10.1038/386788a0 |
[76] | Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15):18409-18427. doi: 10.1029/JD094iD15p18409 |
[77] | Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. The Journal of Geology, 1993, 101(2):177-190. doi: 10.1086/648215 |
[78] | Kaya M Y, Dupont-Nivet G, Proust J N, et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): role of intensified tectonic activity at ca. 41 Ma[J]. Basin Research, 2019, 31(3):461-486. doi: 10.1111/bre.12330 |
[79] | Soden B J, Jackson D L, Ramaswamy V, et al. The radiative signature of upper tropospheric moistening[J]. Science, 2005, 310(5749):841-844. doi: 10.1126/science.1115602 |
[80] | Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699. doi: 10.1175/JCLI3990.1 |
[81] | Guo Z T, Peng S Z, Hao Q Z, et al. Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China[J]. Global and Planetary Change, 2004, 41(3-4):135-145. doi: 10.1016/j.gloplacha.2004.01.002 |
[82] | Singh G. History of Aridland vegetation and climate: a global perspective[J]. Biological Reviews, 1988, 63(2):159-195. doi: 10.1111/j.1469-185X.1988.tb00629.x |
[83] | Song Y G, Fang X M, Chen X L, et al. Rock magnetic record of late Neogene red clay sediments from the Chinese Loess Plateau and its implications for East Asian monsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510:109-123. doi: 10.1016/j.palaeo.2017.09.025 |
Geomorphology of the study area and surrounding areas
Morphotectonic map of the Qaidam Basin and locations of the Huatugou section
Early-middle Miocene clay mineral characteristics of Huatugou section
Normalized pie chart of heavy mineral content in Huatugou section
Comparison in various proxies between the Early-Middle Miocene Qaidam Basin and global climatic records