2024 Vol. 44, No. 6
Article Contents

WANG Xudong, ZHUANG Guangchao, FENG Dong. Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 82-95. doi: 10.16562/j.cnki.0256-1492.2023123001
Citation: WANG Xudong, ZHUANG Guangchao, FENG Dong. Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 82-95. doi: 10.16562/j.cnki.0256-1492.2023123001

Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry

More Information
  • The habitable planet, shaped by geological processes and microbial activity, is currently threatened by global warming. Methane, as an important greenhouse gas, is responsible for 20% of global warming. The largest amount of methane on the Earth is found in marine sediment. In these methane-rich marine environments, microbial process such as methanogenesis, anaerobic methane oxidation, and aerobic methane oxidation play a crucial role. In this review, the methane cycle mediated by enzymes or coenzymes containing trace elements was analyzed from the perspective of geological microbiology, the potential trace element demand of microorganisms was examined, and the geochemical evidence of trace elements and isotopes that primarily related to the study of the marine methane cycle in recent years were emphasized. At present, the pure culture of microorganisms involved in the methane cycle presents challenges, and to accurately describe biogeochemical processes in geochemical research is difficult. Therefore, interdisciplinary research that combines microbiology and geochemistry offers clear advantages and promising prospects. Understanding the interplay between microbial activities and trace elements in marine methane-rich environments is crucial for investigating the marine methane cycle and regulating global methane emissions in the context of current global warming. Additionally, this knowledge is anticipated to offer a distinctive vantage point for analyzing historical methane emission events and their global ecological/environmental impacts.

  • 加载中
  • [1] Reay D S, Smith P, Christensen T R, et al. Methane and global environmental change[J]. Annual Review of Environment and Resources, 2018, 43:165-192. doi: 10.1146/annurev-environ-102017-030154

    CrossRef Google Scholar

    [2] Mißbach H, Duda J P, van den Kerkhof A M, et al. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions[J]. Nature Communications, 2021, 12(1):1101. doi: 10.1038/s41467-021-21323-z

    CrossRef Google Scholar

    [3] Chen C S, Qin S F, Wang Y P, et al. High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions[J]. Nature Communications, 2022, 13(1):6893. doi: 10.1038/s41467-022-34645-3

    CrossRef Google Scholar

    [4] Peng S S, Lin X, Thompson R L, et al. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature, 2022, 612(7940):477-482. doi: 10.1038/s41586-022-05447-w

    CrossRef Google Scholar

    [5] Rocher-Ros G, Stanley E H, Loken L C, et al. Global methane emissions from rivers and streams[J]. Nature, 2023, 621(7979):530-535. doi: 10.1038/s41586-023-06344-6

    CrossRef Google Scholar

    [6] Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes[M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and Marine Biology: an Annual Review. Boca Raton: CRC Press, 2005: 1-46.

    Google Scholar

    [7] Yang S S, Lv Y X, Liu X P, et al. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J]. Nature Communications, 2020, 11(1):3941. doi: 10.1038/s41467-020-17860-8

    CrossRef Google Scholar

    [8] Giovannelli D. Trace metal availability and the evolution of biogeochemistry[J]. Nature Reviews Earth & Environment, 2023, 4(9):597-598.

    Google Scholar

    [9] Tagliabue A, Bowie A R, Boyd P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643):51-59. doi: 10.1038/nature21058

    CrossRef Google Scholar

    [10] Swanner E D, Planavsky N J, Lalonde S V, et al. Cobalt and marine redox evolution[J]. Earth and Planetary Science Letters, 2014, 390:253-263. doi: 10.1016/j.jpgl.2014.01.001

    CrossRef Google Scholar

    [11] Shafiee R T, Diver P J, Snow J T, et al. Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches[J]. ISME Communications, 2021, 1(1):1. doi: 10.1038/s43705-021-00001-7

    CrossRef Google Scholar

    [12] Buessecker S, Palmer M, Lai D X, et al. An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea[J]. Nature Communications, 2022, 13(1):3773. doi: 10.1038/s41467-022-31452-8

    CrossRef Google Scholar

    [13] Dupont C L, Butcher A, Valas R E, et al. History of biological metal utilization inferred through phylogenomic analysis of protein structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23):10567-10572.

    Google Scholar

    [14] Mele B H, Monticelli M, Leone S, et al. Oxidoreductases and metal cofactors in the functioning of the earth[J]. Essays in Biochemistry, 2023, 67(4):653-670. doi: 10.1042/EBC20230012

    CrossRef Google Scholar

    [15] Rudroff F, Mihovilovic M D, Gröger H, et al. Opportunities and challenges for combining chemo- and biocatalysis[J]. Nature Catalysis, 2018, 1(1):12-22. doi: 10.1038/s41929-017-0010-4

    CrossRef Google Scholar

    [16] Glass J B, Orphan V J. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide[J]. Frontiers in Microbiology, 2012, 3:61.

    Google Scholar

    [17] Glass J B, Yu H, Steele J A, et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments[J]. Environmental Microbiology, 2014, 16(6):1592-1611. doi: 10.1111/1462-2920.12314

    CrossRef Google Scholar

    [18] Glass J B, Chen S, Dawson K S, et al. Trace metal imaging of sulfate-reducing bacteria and methanogenic archaea at single-cell resolution by synchrotron X-ray fluorescence imaging[J]. Geomicrobiology Journal, 2018, 35(1):81-89. doi: 10.1080/01490451.2017.1321068

    CrossRef Google Scholar

    [19] Krüger M, Meyerdierks A, Glöckner F O, et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically[J]. Nature, 2003, 426(6968):878-881. doi: 10.1038/nature02207

    CrossRef Google Scholar

    [20] Pol A, Barends T R M, Dietl A, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots[J]. Environmental Microbiology, 2014, 16(1):255-264. doi: 10.1111/1462-2920.12249

    CrossRef Google Scholar

    [21] Shiller A M, Chan E W, Joung D J, et al. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy[J]. Scientific Reports, 2017, 7(1):10389. doi: 10.1038/s41598-017-11060-z

    CrossRef Google Scholar

    [22] Wang X, Barrat J A, Bayon G, et al. Lanthanum anomalies as fingerprints of methanotrophy[J]. Geochemical Perspectives Letters, 2020, 14:26-30. doi: 10.7185/geochemlet.2019

    CrossRef Google Scholar

    [23] Meyer A C S, Grundle D, Cullen J T. Selective uptake of rare earth elements in marine systems as an indicator of and control on aerobic bacterial methanotrophy[J]. Earth and Planetary Science Letters, 2021, 558:116756. doi: 10.1016/j.jpgl.2021.116756

    CrossRef Google Scholar

    [24] Garcia P S, Gribaldo S, Borrel G. Diversity and evolution of methane-related pathways in archaea[J]. Annual Review of Microbiology, 2022, 76:727-755. doi: 10.1146/annurev-micro-041020-024935

    CrossRef Google Scholar

    [25] Mayumi D, Mochimaru H, Tamaki H, et al. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309):222-225. doi: 10.1126/science.aaf8821

    CrossRef Google Scholar

    [26] Wang Y Z, Wegener G, Williams T A, et al. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism[J]. Science Advances, 2021, 7(27):eabj1453. doi: 10.1126/sciadv.abj1453

    CrossRef Google Scholar

    [27] Zhou Z, Zhang C J, Liu P F, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892):257-262. doi: 10.1038/s41586-021-04235-2

    CrossRef Google Scholar

    [28] Thauer R K, Kaster A K, Seedorf H, et al. Methanogenic archaea: ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8):579-591. doi: 10.1038/nrmicro1931

    CrossRef Google Scholar

    [29] Liu Y C, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1):171-189. doi: 10.1196/annals.1419.019

    CrossRef Google Scholar

    [30] Fricke W F, Seedorf H, Henne A, et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis[J]. Journal of Bacteriology, 2006, 188(2):642-658. doi: 10.1128/JB.188.2.642-658.2006

    CrossRef Google Scholar

    [31] Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture[J]. Microbiology, 1998, 144(9):2377-2406. doi: 10.1099/00221287-144-9-2377

    CrossRef Google Scholar

    [32] Ferry J G. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1):13-38. doi: 10.1111/j.1574-6976.1999.tb00390.x

    CrossRef Google Scholar

    [33] Zhuang G C, Elling F J, Nigro L M, et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2016, 187:1-20. doi: 10.1016/j.gca.2016.05.005

    CrossRef Google Scholar

    [34] Kurth J M, Nobu M K, Tamaki H, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds[J]. The ISME Journal, 2021, 15(12):3549-3565. doi: 10.1038/s41396-021-01025-6

    CrossRef Google Scholar

    [35] Laso-Pérez R, Hahn C, van Vliet D M, et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico[J]. mBio, 2019, 10(4):e01814-19.

    Google Scholar

    [36] Zerkle A L, House C H, Brantley S L. Biogeochemical signatures through time as inferred from whole microbial genomes[J]. American Journal of Science, 2005, 305(6-8):467-502. doi: 10.2475/ajs.305.6-8.467

    CrossRef Google Scholar

    [37] Timmis K N. Handbook of Hydrocarbon and Lipid Microbiology[M]. Berlin Heidelberg: Springer, 2010.

    Google Scholar

    [38] Hedderich R, Whitman W B. Physiology and biochemistry of the methane-producing archaea[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 1050-1079.

    Google Scholar

    [39] Wagner T, Koch J, Ermler U, et al. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction[J]. Science, 2017, 357(6352):699-703. doi: 10.1126/science.aan0425

    CrossRef Google Scholar

    [40] Segarra K E A, Schubotz F, Samarkin V, et al. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J]. Nature Communications, 2015, 6(1):7477. doi: 10.1038/ncomms8477

    CrossRef Google Scholar

    [41] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63:311-334. doi: 10.1146/annurev.micro.61.080706.093130

    CrossRef Google Scholar

    [42] Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochemical Cycles, 1994, 8(4):451-463. doi: 10.1029/94GB01800

    CrossRef Google Scholar

    [43] Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics[J]. Science, 2004, 305(5689):1457-1462. doi: 10.1126/science.1100025

    CrossRef Google Scholar

    [44] Scheller S, Goenrich M, Boecher R, et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane[J]. Nature, 2010, 465(7298):606-608. doi: 10.1038/nature09015

    CrossRef Google Scholar

    [45] Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484. doi: 10.1046/j.1462-2920.2000.00135.x

    CrossRef Google Scholar

    [46] Lessner D J, Li L Y, Li Q B, et al. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47):17921-17926.

    Google Scholar

    [47] Zehnder A J, Brock T D. Methane formation and methane oxidation by methanogenic bacteria[J]. Journal of Bacteriology, 1979, 137(1):420-432. doi: 10.1128/jb.137.1.420-432.1979

    CrossRef Google Scholar

    [48] Moran J J, Beal E J, Vrentas J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(1):162-173. doi: 10.1111/j.1462-2920.2007.01441.x

    CrossRef Google Scholar

    [49] Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425):541-546. doi: 10.1038/nature11656

    CrossRef Google Scholar

    [50] Jermy A. Zero-valent sulphur and marine methane oxidation[J]. Nature Reviews Microbiology, 2013, 11(1):5.

    Google Scholar

    [51] Lichtschlag A, Kamyshny A, Ferdelman T G, et al. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea)[J]. Geochimica et Cosmochimica Acta, 2013, 105:130-145. doi: 10.1016/j.gca.2012.11.025

    CrossRef Google Scholar

    [52] Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123:1-12. doi: 10.1016/j.dsr.2017.02.005

    CrossRef Google Scholar

    [53] Zopfi J, Ferdelman T G, Fossing H. Distribution and fate of sulfur intermediates – sulfite, tetrathionate, thiosulfate, and elemental sulfur – in marine sediments[M]//Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry – Past and Present. Boulder, Colorado: Geological Society of America, 2004: 97-116.

    Google Scholar

    [54] Zhang J, Liu R, Xi S C, et al. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea[J]. The ISME Journal, 2020, 14(9):2261-2274. doi: 10.1038/s41396-020-0684-5

    CrossRef Google Scholar

    [55] Liu R, Shan Y Q, Xi S C, et al. A deep-sea sulfate-reducing bacterium generates zero-valent sulfur via metabolizing thiosulfate[J]. mLife, 2022, 1(3):257-271. doi: 10.1002/mlf2.12038

    CrossRef Google Scholar

    [56] McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia[J]. Nature, 2015, 526(7574):531-535. doi: 10.1038/nature15512

    CrossRef Google Scholar

    [57] Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J]. Nature, 2015, 526(7574):587-590. doi: 10.1038/nature15733

    CrossRef Google Scholar

    [58] Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274):703-707. doi: 10.1126/science.aad7154

    CrossRef Google Scholar

    [59] Dekas A E, Poretsky R S, Orphan V J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia[J]. Science, 2009, 326(5951):422-426. doi: 10.1126/science.1178223

    CrossRef Google Scholar

    [60] Thauer R K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2[J]. Current Opinion in Microbiology, 2011, 14(3):292-299. doi: 10.1016/j.mib.2011.03.003

    CrossRef Google Scholar

    [61] Mao S H, Zhang H H, Zhuang G C, et al. Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters[J]. Nature Communications, 2022, 13(1):7309. doi: 10.1038/s41467-022-35082-y

    CrossRef Google Scholar

    [62] Chen Y, Murrell J C. Ecology of aerobic methanotrophs and their role in methane cycling[M]//Timmis K N. Handbook of Hydrocarbon and Lipid Microbiology. Berlin Heidelberg: Springer, 2010: 3067-3076.

    Google Scholar

    [63] Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin[J]. Geochimica et Cosmochimica Acta, 2001, 65(16):2633-2640. doi: 10.1016/S0016-7037(01)00625-1

    CrossRef Google Scholar

    [64] Blumenberg M, Seifert R, Michaelis W. Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column[J]. Organic Geochemistry, 2007, 38(1):84-91. doi: 10.1016/j.orggeochem.2006.08.011

    CrossRef Google Scholar

    [65] Leonte M, Kessler J D, Kellermann M Y, et al. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin[J]. Geochimica et Cosmochimica Acta, 2017, 204:375-387. doi: 10.1016/j.gca.2017.01.009

    CrossRef Google Scholar

    [66] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [67] Spencer-Jones C L, Wagner T, Talbot H M. A record of aerobic methane oxidation in tropical Africa over the last 2.5Ma[J]. Geochimica et Cosmochimica Acta, 2017, 218:27-39. doi: 10.1016/j.gca.2017.08.042

    CrossRef Google Scholar

    [68] Anthony K W, Daanen R, Anthony P, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s[J]. Nature Geoscience, 2016, 9(9):679-682. doi: 10.1038/ngeo2795

    CrossRef Google Scholar

    [69] Weber T, Wiseman N A, Kock A. Global ocean methane emissions dominated by shallow coastal waters[J]. Nature Communications, 2019, 10(1):4584. doi: 10.1038/s41467-019-12541-7

    CrossRef Google Scholar

    [70] Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29:142-152. doi: 10.1016/j.ymben.2015.03.010

    CrossRef Google Scholar

    [71] Stanley S H, Prior S D, Leak D J, et al. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures[J]. Biotechnology Letters, 1983, 5(7):487-492. doi: 10.1007/BF00132233

    CrossRef Google Scholar

    [72] Picone N, Op den Camp H J M. Role of rare earth elements in methanol oxidation[J]. Current Opinion in Chemical Biology, 2019, 49:39-44. doi: 10.1016/j.cbpa.2018.09.019

    CrossRef Google Scholar

    [73] Ōgushi S, Ando M, Tsuru D. Formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme[J]. The Journal of Biochemistry, 1984, 96(5):1587-1591. doi: 10.1093/oxfordjournals.jbchem.a134988

    CrossRef Google Scholar

    [74] 朱小飞, 谭相石. 金属组学: Wood-Ljungdahl通路中的金属蛋白/金属酶[J]. 中国科学 B辑: 化学, 2009, 39(7): 607-619

    Google Scholar

    ZHU Xiaofei, TAN Xiangshi. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-ljungdahl pathway[J]. Science in China Series B: Chemistry, 2009, 52(12): 2071-2082.]

    Google Scholar

    [75] Smrzka D, Feng D, Himmler T, et al. Trace elements in methane-seep carbonates: potentials, limitations, and perspectives[J]. Earth-Science Reviews, 2020, 208:103263. doi: 10.1016/j.earscirev.2020.103263

    CrossRef Google Scholar

    [76] Feng D, Lin Z J, Bian Y Y, et al. Rare earth elements of seep carbonates: indication for redox variations and microbiological processes at modern seep sites[J]. Journal of Asian Earth Sciences, 2013, 65:27-33. doi: 10.1016/j.jseaes.2012.09.002

    CrossRef Google Scholar

    [77] Chen L Y, Jin M, Wang X D, et al. The effects of diagenetic processes and fluid migration on rare earth element and organic matter distribution in seep-related sediments: a case study from the South China Sea[J]. Journal of Asian Earth Sciences, 2020, 191:104233. doi: 10.1016/j.jseaes.2020.104233

    CrossRef Google Scholar

    [78] Wang X D, Bayon G, Kim J H, et al. Trace element systematics in cold seep carbonates and associated lipid compounds[J]. Chemical Geology, 2019, 528:119277. doi: 10.1016/j.chemgeo.2019.119277

    CrossRef Google Scholar

    [79] Lee D H, Kim J H, Lee Y M, et al. Metalloenzyme signatures in authigenic carbonates from the Chukchi Borderlands in the western Arctic Ocean[J]. Scientific Reports, 2022, 12(1):16597. doi: 10.1038/s41598-022-21184-6

    CrossRef Google Scholar

    [80] Shima S, Thauer R K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea[J]. Current Opinion in Microbiology, 2005, 8(6):643-648. doi: 10.1016/j.mib.2005.10.002

    CrossRef Google Scholar

    [81] Wrede C, Krukenberg V, Dreier A, et al. Detection of metabolic key enzymes of methane turnover processes in cold seep microbial biofilms[J]. Geomicrobiology Journal, 2013, 30(3):214-227. doi: 10.1080/01490451.2012.665150

    CrossRef Google Scholar

    [82] Mayr S, Latkoczy C, Krüger M, et al. Structure of an F430 variant from archaea associated with anaerobic oxidation of methane[J]. Journal of the American Chemical Society, 2008, 130(32):10758-10767. doi: 10.1021/ja802929z

    CrossRef Google Scholar

    [83] Shima S, Krueger M, Weinert T, et al. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically[J]. Nature, 2012, 481(7379):98-101. doi: 10.1038/nature10663

    CrossRef Google Scholar

    [84] Allen K D, Wegener G, White R H. Discovery of multiple modified F430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F430 in nature[J]. Applied and Environmental Microbiology, 2014, 80(20):6403-6412. doi: 10.1128/AEM.02202-14

    CrossRef Google Scholar

    [85] Castrillón Peña A, Cramer T H, Guerrero J. Hydrothermal organic aggregates associated with the High-Ni grades of the Cerro Matoso laterite deposit, Montelibano, Colombia[J]. Ofioliti, 2022, 47(2):113-135.

    Google Scholar

    [86] Reitner J, Blumenberg M, Walliser E O, et al. Methane-derived carbonate conduits from the late Aptian of Salinac (Marne Bleues, Vocontian Basin, France): petrology and biosignatures[J]. Marine and Petroleum Geology, 2015, 66:641-652. doi: 10.1016/j.marpetgeo.2015.05.029

    CrossRef Google Scholar

    [87] Hausrath E M, Liermann L J, House C H, et al. The effect of methanogen growth on mineral substrates: will Ni markers of methanogen-based communities be detectable in the rock record?[J]. Geobiology, 2007, 5(1):49-61. doi: 10.1111/j.1472-4669.2007.00095.x

    CrossRef Google Scholar

    [88] Cameron V, Vance D, Archer C, et al. A biomarker based on the stable isotopes of nickel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27):10944-10948.

    Google Scholar

    [89] Chen C, Wang J S, Algeo T J, et al. Sulfate-driven anaerobic oxidation of methane inferred from trace-element chemistry and nickel isotopes of pyrite[J]. Geochimica et Cosmochimica Acta, 2023, 349:81-95. doi: 10.1016/j.gca.2023.04.002

    CrossRef Google Scholar

    [90] Konhauser K O, Pecoits E, Lalonde S V, et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 2009, 458(7239):750-753. doi: 10.1038/nature07858

    CrossRef Google Scholar

    [91] Fontecilla-Camps J C. Nickel and the origin and early evolution of life[J]. Metallomics, 2022, 14(4):mfac016. doi: 10.1093/mtomcs/mfac016

    CrossRef Google Scholar

    [92] Zhao Z Q, Shen B, Zhu J M, et al. Active methanogenesis during the melting of Marinoan snowball Earth[J]. Nature Communications, 2021, 12(1):955. doi: 10.1038/s41467-021-21114-6

    CrossRef Google Scholar

    [93] Valentine D L. Emerging topics in marine methane biogeochemistry[J]. Annual Review of Marine Science, 2011, 3:147-171. doi: 10.1146/annurev-marine-120709-142734

    CrossRef Google Scholar

    [94] Durisch-Kaiser E, Klauser L, Wehrli B, et al. Evidence of intense archaeal and bacterial methanotrophic activity in the black sea water column[J]. Applied and Environmental Microbiology, 2005, 71(12):8099-8106. doi: 10.1128/AEM.71.12.8099-8106.2005

    CrossRef Google Scholar

    [95] Bayon G, Lemaitre N, Barrat J A, et al. Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation[J]. Chemical Geology, 2020, 555:119832. doi: 10.1016/j.chemgeo.2020.119832

    CrossRef Google Scholar

    [96] Guggenheim C, Brand A, Bürgmann H, et al. Aerobic methane oxidation under copper scarcity in a stratified lake[J]. Scientific Reports, 2019, 9(1):4817. doi: 10.1038/s41598-019-40642-2

    CrossRef Google Scholar

    [97] Zavina-James N A V, Zerkle A L, Steele R C J, et al. A copper isotope investigation of methane cycling in Late Archaean sediments[J]. Precambrian Research, 2021, 362:106267. doi: 10.1016/j.precamres.2021.106267

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(444) PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint