2024 Vol. 44, No. 6
Article Contents

HUANG Xiaobo, ZHAO Xinyu, LI Hongwei, TIAN Ruonan, HU Kun, LI Yanwen, TU Hua, LAI Zhongping. Luminescence dating of fluvial terrace and karst cave deposits in the Upper Beijiang River, Guangdong Province, and its geomorphological implications[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 186-194. doi: 10.16562/j.cnki.0256-1492.2023122601
Citation: HUANG Xiaobo, ZHAO Xinyu, LI Hongwei, TIAN Ruonan, HU Kun, LI Yanwen, TU Hua, LAI Zhongping. Luminescence dating of fluvial terrace and karst cave deposits in the Upper Beijiang River, Guangdong Province, and its geomorphological implications[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 186-194. doi: 10.16562/j.cnki.0256-1492.2023122601

Luminescence dating of fluvial terrace and karst cave deposits in the Upper Beijiang River, Guangdong Province, and its geomorphological implications

More Information
  • Fluvial deposits in river terraces and alluvial deposits in karstic caves are important archives for geomorphological study of river valleys. However, there is still a lack of direct chronological evidence supporting the relationship between the developing processes of multi-layer caves and river terraces in basin scale. The upper reaches of Beijiang River run through both sandstone basins and limestone areas, resulted in multilevel river terraces and cave systems. This unique setting provides an ideal opportunity to investigate the evolutionary relationship between rivers and stratified caves. In this study, optically stimulated luminescence (OSL) dating was applied to constrain the age of the fluvial deposits from the second-level terrace in Pingshi Town in the upper reaches of Beijiang River in Guangdong Province, as well as from alluvial sediments in the second-level karst cave of Gufoyan Cave system in the neighboring area. The dating results reveal that the second terrace at Pingshi dates back to 101~79 ka, while the deposits in the second layer of Gufoyan Cave date back to 121~71 ka, both falling within the Marine Isotope Stage (MIS) 5. These findings indicate that during the last interglacial period, an incision occurred in the upper reach of the Beijiang River, leading to a drop in regional groundwater table. Therefore, it resulted in abandonment of the second layer of Gufoyan Cave by underground river. The cave alluvial sediments and river terrace deposits in the area were synchronous at the glacial-interglacial time scale, which provided direct chronological evidence for co-evolution between karst and river landforms in the upper reaches of Beijiang River. This study provided supports to further studies on regional Quaternary geology and river landform evolution through dating alluvial sediments found within karst caves.

  • 加载中
  • [1] Harmand D, Adamson K, Rixhon G, et al. Relationships between fluvial evolution and karstification related to climatic, tectonic and eustatic forcing in temperate regions[J]. Quaternary Science Reviews, 2017, 166:38-56. doi: 10.1016/j.quascirev.2017.02.016

    CrossRef Google Scholar

    [2] Rixhon G. Deeper underground: cosmogenic burial dating of cave-deposited alluvium to reconstruct long-term fluvial landscape evolution[J]. Earth-Science Reviews, 2023, 239:104357. doi: 10.1016/j.earscirev.2023.104357

    CrossRef Google Scholar

    [3] 陈文奇, 蒋玺, 宁凡, 等. 双河洞层状溶洞与区域河流阶地发育耦合关系探析[J]. 贵州大学学报: 自然科学版, 2020, 37(5):46-53

    Google Scholar

    CHEN Wenqi, JIANG Xi, NING Fan, et al. Analysis of coupling relationship between multi-layer Caves in Shuanghe cave national geopark and regional fluvial terraces[J]. Journal of Guizhou University: Natural Sciences, 2020, 37(5):46-53.]

    Google Scholar

    [4] Bridgland D R, Westaway R. Preservation patterns of Late Cenozoic fluvial deposits and their implications: results from IGCP 449[J]. Quaternary International, 2008, 189(1):5-38. doi: 10.1016/j.quaint.2007.08.036

    CrossRef Google Scholar

    [5] 胡春生. 河流阶地研究进展综述[J]. 地球环境学报, 2014, 5(5):353-362 doi: 10.7515/JEE201405007

    CrossRef Google Scholar

    HU Chunsheng. Progress in research on river terraces[J]. Journal of Earth Environment, 2014, 5(5):353-362.] doi: 10.7515/JEE201405007

    CrossRef Google Scholar

    [6] 王迎国, 常宏, 周卫健. 渭河盆地河流阶地演化及其构造—气候意义[J]. 地质论评, 2021, 67(4):1033-1049

    Google Scholar

    WANG Yingguo, CHANG Hong, ZHOU Weijian. Fluvial terrace evolution and its tectonic—climatic significance in the Weihe basin[J]. Geological Review, 2021, 67(4):1033-1049.]

    Google Scholar

    [7] 孔丽娟, 沈冠军, 王頠, 等. 狮子洞铀系测年与百色盆地第Ⅲ级阶地的年代[J]. 地球与环境, 2012, 40(3):349-353

    Google Scholar

    KONG Lijuan, SHEN Guanjun, WANG Wei, et al. U-Series dating of the Shizi cave and age of the third terrace of the Bubing and Baise Basins, Guangxi, China[J]. Earth and Environment, 2012, 40(3):349-353.]

    Google Scholar

    [8] 樊云龙, 刘建建, 朱克卫, 等. 喀斯特峡谷河流下切速率研究: 以北盘江尼珠河大峡谷为例[J]. 第四纪研究, 2021, 41(6):1558-1564 doi: 10.11928/j.issn.1001-7410.2021.06.04

    CrossRef Google Scholar

    FAN Yunlong, LIU Jianjian, ZHU Kewei, et al. Study on river downcutting rate in karst canyon: a case study of Nizhu River grand canyon in Beipan River[J]. Quaternary Sciences, 2021, 41(6):1558-1564.] doi: 10.11928/j.issn.1001-7410.2021.06.04

    CrossRef Google Scholar

    [9] 平亚敏, 杨桂芳, 张绪教, 等. 张家界砂岩地貌形成时代: 来自阶地与溶洞对比的证据[J]. 地质论评, 2011, 57(1):118-124

    Google Scholar

    PING Yamin, YANG Guifang, ZHANG Xujiao, et al. Timing of Zhangjiajie sandstone landforms: evidence from fluvial terraces and karst caves[J]. Geological Review, 2011, 57(1):118-124.]

    Google Scholar

    [10] 刘尚仁, 黄瑞红, 张治邦. 广东阶地的特征[J]. 中山大学学报: 自然科学版, 1996, 35(S1):29-37

    Google Scholar

    LIU Shangren, HUANG Ruihong, ZHANG Zhibang. Features of Guangdong terrace[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1996, 35(S1):29-37.]

    Google Scholar

    [11] Xu X L, Zhong J M, Huang X M, et al. Age comparison by luminescence using quartz and feldspar on core HPQK01 from the Pearl River delta in China[J]. Quaternary Geochronology, 2022, 71:101320. doi: 10.1016/j.quageo.2022.101320

    CrossRef Google Scholar

    [12] Shen Q J, Zhou Y J, Xu Y T, et al. Late Quaternary river evolution and its response to climate changes in the upper Mekong River of the Qinghai–Tibetan Plateau[J]. Geomorphology, 2023, 442:108920. doi: 10.1016/j.geomorph.2023.108920

    CrossRef Google Scholar

    [13] Lai Z P. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol[J]. Journal of Asian Earth Sciences, 2010, 37(2):176-185. doi: 10.1016/j.jseaes.2009.08.003

    CrossRef Google Scholar

    [14] 黄进, 刘尚仁, 高全洲, 等. 粤北坪石武江阶地的研究及金鸡岭年龄的定量测算[J]. 经济地理, 2006, 26(S1):1-6

    Google Scholar

    HUANG Jin, LIU Shangren, GAO Quanzhou, et al. A study of the Wujiang terraces in Pingshi, northern Guangdong Province and the quantitative estimation of the age of Jinjiling[J]. Economic Geography, 2006, 26(S1):1-6.]

    Google Scholar

    [15] 刘尚仁, 黄进. 粤北地区的河流阶地: 广东河流阶地研究之三[J]. 热带地理, 2011, 31(1):3-7

    Google Scholar

    LIU Shangren, HUANG Jin. The River terraces in North Guangdong[J]. Tropical Geography, 2011, 31(1):3-7.]

    Google Scholar

    [16] 赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5):683-693 doi: 10.11820/dlkxjz.2013.05.001

    CrossRef Google Scholar

    LAI Zhongping, OU Xianjiao. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5):683-693.] doi: 10.11820/dlkxjz.2013.05.001

    CrossRef Google Scholar

    [17] Murray A S, Wintle A G. The single aliquot regenerative dose protocol: potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4-5):377-381. doi: 10.1016/S1350-4487(03)00053-2

    CrossRef Google Scholar

    [18] Lai Z P. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau[J]. Radiation Measurements, 2006, 41(1):9-16. doi: 10.1016/j.radmeas.2005.06.031

    CrossRef Google Scholar

    [19] Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41(4):369-391. doi: 10.1016/j.radmeas.2005.11.001

    CrossRef Google Scholar

    [20] Guérin G, Mercier N, Nathan R, et al. On the use of the infinite matrix assumption and associated concepts: a critical review[J]. Radiation Measurements, 2012, 47(9):778-785. doi: 10.1016/j.radmeas.2012.04.004

    CrossRef Google Scholar

    [21] Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2-3):497-500. doi: 10.1016/1350-4487(94)90086-8

    CrossRef Google Scholar

    [22] Lai Z P, Zöller L, Fuchs M, et al. Alpha efficiency determination for OSL of quartz extracted from Chinese loess[J]. Radiation Measurements, 2008, 43(2-6):767-770. doi: 10.1016/j.radmeas.2008.01.022

    CrossRef Google Scholar

    [23] Durcan J A, King G E, Duller G A T. DRAC: Dose Rate and Age Calculator for trapped charge dating[J]. Quaternary Geochronology, 2015, 28:54-61. doi: 10.1016/j.quageo.2015.03.012

    CrossRef Google Scholar

    [24] 刘尚仁. 北江水系的形成和发育[J]. 中山大学学报, 1987(2):8-14

    Google Scholar

    LIU Shangren. Formation and development of the North River Drainage[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1987(2):8-14.]

    Google Scholar

    [25] 黄进, 刘尚仁, 黄瑞红, 等. 丹霞盆地河流阶地的研究[J]. 经济地理, 1994, 14(S1):22-26

    Google Scholar

    HUANG Jin, LIU Shangren, HUANG Ruihong, et al. Study of river terraces in Danxia Basin[J]. Economic Geography, 1994, 14(S1):22-26.]

    Google Scholar

    [26] Lian O B. LUMINESCENCE DATING | Thermo luminescence[M]//Elias S A, Mock C J. Encyclopedia of Quaternary Science. 2nd ed. Amsterdam: Elsevier, 2013: 643-652.

    Google Scholar

    [27] 潘保田, 刘小丰, 高红山, 等. 渭河上游陇西段河流阶地的形成时代及其成因[J]. 自然科学进展, 2007, 17(8):1063-1068 doi: 10.3321/j.issn:1002-008x.2007.08.008

    CrossRef Google Scholar

    PAN Baotian, LIU Xiaofeng, GAO Hongshan, et al. Formation age and causes of river terrace in Longxi section of the upper reaches of Weihe River[J]. Progress in Natural Science, 2007, 17(8):1063-1068.] doi: 10.3321/j.issn:1002-008x.2007.08.008

    CrossRef Google Scholar

    [28] Chang Q F, Lai Z P, An F Y, et al. Chronology for terraces of the Nalinggele River in the north Qinghai-Tibet Plateau and implications for salt lake resource formation in the Qaidam Basin[J]. Quaternary International, 2017, 430:12-20. doi: 10.1016/j.quaint.2016.02.022

    CrossRef Google Scholar

    [29] 李雪梅, 张会平. 河流瞬时地貌: 特征、过程及其构造-气候相互作用内涵[J]. 第四纪研究, 2017, 37(2):416-430

    Google Scholar

    LI Xuemei, ZHANG Huiping. Transient fluvial landscape: features, processes and its implication for tectonic-climate interaction[J]. Quaternary Sciences, 2017, 37(2):416-430.]

    Google Scholar

    [30] Li J J, Fang X M, Van der Voo R, et al. Magnetostratigraphic dating of river terraces: rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5):10121-10132. doi: 10.1029/97JB00275

    CrossRef Google Scholar

    [31] Pan B T, Burbank D, Wang Y X, et al. A 900 k. y. record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology, 2003, 31(11):957-960. doi: 10.1130/G19685.1

    CrossRef Google Scholar

    [32] 杨景春, 李有利. 地貌学原理[M]. 4版. 北京: 北京大学出版社, 2017: 38

    Google Scholar

    YANG Jingchun, LI Youli. Principles of Geomorphology[M]. 4th ed. Beijing: Peking University Press, 2017: 38.]

    Google Scholar

    [33] Pan B T, Su H, Hu Z B, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China[J]. Quaternary Science Reviews, 2009, 28(27-28):3281-3290. doi: 10.1016/j.quascirev.2009.09.003

    CrossRef Google Scholar

    [34] Bridgland D R, Westaway R. Quaternary fluvial archives and landscape evolution: a global synthesis[J]. Proceedings of the Geologists' Association, 2014, 125(5-6):600-629. doi: 10.1016/j.pgeola.2014.10.009

    CrossRef Google Scholar

    [35] Wang A, Smith J A, Wang G C, et al. Late Quaternary river terrace sequences in the eastern Kunlun Range, northern Tibet: a combined record of climatic change and surface uplift[J]. Journal of Asian Earth Sciences, 2009, 34(4):532-543. doi: 10.1016/j.jseaes.2008.09.003

    CrossRef Google Scholar

    [36] Tao Y L, Xiong J G, Zhang H P, et al. Climate-driven formation of fluvial terraces across the Tibetan Plateau since 200 ka: a review[J]. Quaternary Science Reviews, 2020, 237:106303. doi: 10.1016/j.quascirev.2020.106303

    CrossRef Google Scholar

    [37] Guo X H, Forman S L, Marin L, et al. Assessing tectonic and climatic controls for Late Quaternary fluvial terraces in Guide, Jianzha, and Xunhua Basins along the Yellow River on the northeastern Tibetan Plateau[J]. Quaternary Science Reviews, 2018, 195:109-121. doi: 10.1016/j.quascirev.2018.07.005

    CrossRef Google Scholar

    [38] Wang X Y, Vandenberghe J, Yi S W, et al. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: an example from the NE Tibetan Plateau[J]. Global and Planetary Change, 2015, 133:318-329. doi: 10.1016/j.gloplacha.2015.09.009

    CrossRef Google Scholar

    [39] Yu Y, Wang X Y, Yi S W, et al. Late Quaternary aggradation and incision in the headwaters of the Yangtze River, eastern Tibetan Plateau, China[J]. GSA Bulletin, 2022, 134(1-2):371-388. doi: 10.1130/B35983.1

    CrossRef Google Scholar

    [40] Yang H B, Yang X P, Huang W L, et al. 10Be and OSL dating of Pleistocene fluvial terraces along the Hongshuiba River: constraints on tectonic and climatic drivers for fluvial downcutting across the NE Tibetan Plateau margin, China[J]. Geomorphology, 2020, 348:106884. doi: 10.1016/j.geomorph.2019.106884

    CrossRef Google Scholar

    [41] Cao L C, Shao L, Qiao P J, et al. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 496:120-131. doi: 10.1016/j.jpgl.2018.05.039

    CrossRef Google Scholar

    [42] 邵磊, 乔培军, 崔宇驰, 等. 新生代早期南海北部水系演变[J]. 科技导报, 2020, 38(18):57-61

    Google Scholar

    SHAO Lei, QIAO Peijun, CUI Yuchi, et al. The evolutions of the fluvial systems in the northern South China Sea since the early Cenozoic[J]. Science & Technology Review, 2020, 38(18):57-61.]

    Google Scholar

    [43] Wang Y, Wang Y J, Li S B, et al. Exhumation and landscape evolution in eastern South China since the Cretaceous: new insights from fission-track thermo chronology[J]. Journal of Asian Earth Sciences, 2020, 191:104239. doi: 10.1016/j.jseaes.2020.104239

    CrossRef Google Scholar

    [44] Vandenberghe J. River terraces as a response to climatic forcing: formation processes, sedimentary characteristics and sites for human occupation[J]. Quaternary International, 2015, 370:3-11. doi: 10.1016/j.quaint.2014.05.046

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(142) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint