2025 Vol. 45, No. 3
Article Contents

CHEN Mingtao, LI Yanlong, ZHAO Qiang, ZHANG Yajuan, FAN Haohao, WANG Zhenhao, WU Nengyou. Research and development of a dynamic temperature and stress monitoring probe for hydrate reservoirs based on fiber optic sensing technology[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 166-180. doi: 10.16562/j.cnki.0256-1492.2023112001
Citation: CHEN Mingtao, LI Yanlong, ZHAO Qiang, ZHANG Yajuan, FAN Haohao, WANG Zhenhao, WU Nengyou. Research and development of a dynamic temperature and stress monitoring probe for hydrate reservoirs based on fiber optic sensing technology[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 166-180. doi: 10.16562/j.cnki.0256-1492.2023112001

Research and development of a dynamic temperature and stress monitoring probe for hydrate reservoirs based on fiber optic sensing technology

More Information
  • Studying the changes in temperature and stress of hydrate-bearing sediment (HBS) during hydrate growth, decomposition, and deformation is crucial for understanding the destabilization mechanism of hydrate reservoir. To monitor the changes of internal temperature and stress in HBS during these processes, we proposed a temperature and stress monitoring scheme for HBS based on fiber-optic sensing technology, for which an optical fiber monitoring probe was designed. The feasibility and precision of the probe in the temperature and stress of HBS were compared with those of conventional sensors. Additionally, the changes of horizontal stress of HBS during hydrate formation and dissociation were effectively monitored by the optical fiber sensor. Experimental results show that the stress and temperature obtained by fiber-optic probe exhibit similar trends to those obtained with conventional sensors. However, some differences were observed due mainly to the heterogeneity of the HBS and the distance between the loading point and the sensing point. Overall, the fiber optic probe could better capture the increase in compressive stress caused by hydrate formation and the decrease in horizontal stress of hydrate-bearing sediments during hydrate decomposition.

  • 加载中
  • [1] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5):151-158

    Google Scholar

    HU Gaowei, LI Yanlong, WU Nengyou, et al. Undrained shear strength estimation of the cover layer of hydrate at site W18/19 of Shenhu area[J]. Marine Geology & Quaternary Geology, 2017, 37(5):151-158.]

    Google Scholar

    [2] Li Y L, Wu N Y, Gao D L, et al. Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production[J]. Energy, 2021, 219:119585. doi: 10.1016/j.energy.2020.119585

    CrossRef Google Scholar

    [3] Chen M T, Li Y L, Merey Ş, et al. Review on the test methods and devices for mechanical properties of hydrate-bearing sediments[J]. Sustainability, 2022, 14(10):6239. doi: 10.3390/su14106239

    CrossRef Google Scholar

    [4] 葛勇强, 曹晨, 陈家旺, 等. 基于MEMS传感阵列的海底地形形变原位监测装置[J]. 浙江大学学报: 工学版, 2022, 56(9):1732-1739

    Google Scholar

    GE Yongqiang, CAO Chen, CHEN Jiawang, et al. In-situ monitoring device for seabed terrain deformation based on MEMS sensor array[J]. Journal of Zhejiang University: Engineering Science, 2022, 56(9):1732-1739.]

    Google Scholar

    [5] 贾永刚, 陈天, 李培英, 等. 海洋地质灾害原位监测技术研究进展[J]. 中国地质灾害与防治学报, 2022, 33(3):1-14

    Google Scholar

    JIA Yonggang, CHEN Tian, LI Peiying, et al. Research progress on the in-situ monitoring technologies of marine geohazards[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3):1-14.]

    Google Scholar

    [6] 栾锡武, 秦蕴珊, 张训华, 等. 东海陆坡及相邻槽底天然气水合物的稳定域分析[J]. 地球物理学报, 2003, 46(4):467-475 doi: 10.3321/j.issn:0001-5733.2003.04.007

    CrossRef Google Scholar

    LUAN Xiwu, QIN Yunshan, ZHANG Xunhua, et al. The stability zone of gas hydrate in the slope of East China Sea and neighboring trough basin area[J]. Chinese Journal of Geophysics, 2003, 46(4):467-475.] doi: 10.3321/j.issn:0001-5733.2003.04.007

    CrossRef Google Scholar

    [7] 王超群, 丁莹莹, 胡道功, 等. 祁连山冻土区DK-9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质, 2017, 31(1):158-166 doi: 10.3969/j.issn.1000-8527.2017.01.014

    CrossRef Google Scholar

    WANG Chaoqun, DING Yingying, HU Daogong, et al. Temperature monitoring results for gas hydrate borehole DK-9 and thickness of gas hydrate stability zone in the Qilian mountains permafrost[J]. Geoscience, 2017, 31(1):158-166.] doi: 10.3969/j.issn.1000-8527.2017.01.014

    CrossRef Google Scholar

    [8] Fan Z H, Zhu X M, Xu H B, et al. A new method for long-term in situ monitoring of seabed interface evolution: A self-potential probe[J]. Ocean Engineering, 2023, 280:114917. doi: 10.1016/j.oceaneng.2023.114917

    CrossRef Google Scholar

    [9] Mei W X, Liu Z, Wang C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1):5251. doi: 10.1038/s41467-023-40995-3

    CrossRef Google Scholar

    [10] Li T L, Tan Y G, Shi C Y, et al. A high-sensitivity fiber Bragg grating displacement sensor based on transverse property of a tensioned optical fiber configuration and its dynamic performance improvement[J]. IEEE Sensors Journal, 2017, 17(18):5840-5848. doi: 10.1109/JSEN.2017.2737556

    CrossRef Google Scholar

    [11] 仲志成, 赵斌, 林君, 等. 基于光纤传感技术的三维地应力传感器[J]. 光学精密工程, 2018, 26(2):325-335 doi: 10.3788/OPE.20182602.0325

    CrossRef Google Scholar

    ZHONG Zhicheng, ZHAO Bin, LIN Jun, et al. Three dimensional in-situ stress sensor based on optical fiber sensing technology[J]. Optics and Precision Engineering, 2018, 26(2):325-335.] doi: 10.3788/OPE.20182602.0325

    CrossRef Google Scholar

    [12] De Moustier C, Spiess F N, Jabson D, et al. Deep-sea borehole re-entry with fiber optic wireline technology[C]//Proceedings of the 2000 International Symposium on Underwater Technology. Tokyo, Japan: IEEE, 2000: 379-384.

    Google Scholar

    [13] 万庭辉, 邱海峻, 陆敬安, 等. 天然气水合物试采中分布式光纤测温(DTS)数据现场处理及可视化[J]. 海洋地质前沿, 2020, 36(2):59-64

    Google Scholar

    WAN Tinghui, QIU Haijun, LU Jing’an, et al. Study of on-site processing and visualization of DTS data from China's first offshore natural gas hydrate production test in South China Sea[J]. Marine Geology Frontiers, 2020, 36(2):59-64.]

    Google Scholar

    [14] 段胜男, 潘勇, 芦志伟. 光纤温压动态监测技术的油田应用和发展趋势[J]. 石油工业技术监督, 2016, 32(5):49-52 doi: 10.3969/j.issn.1004-1346.2016.05.013

    CrossRef Google Scholar

    DUAN Shengnan, PAN Yong, LU Zhiwei. Oilfield application and development trend of optical fiber temperature and pressure dynamic monitoring technology[J]. Technology Supervision in Petroleum Industry, 2016, 32(5):49-52.] doi: 10.3969/j.issn.1004-1346.2016.05.013

    CrossRef Google Scholar

    [15] 张怀文, 李庭强. 油气井光纤测温技术及其应用[J]. 新疆石油科技, 2009, 19(4):22-25

    Google Scholar

    ZHANG Huaiwen, LI Tingqiang. Fiber optic temperature measurement technology for oil and gas wells and its application[J]. Xinjiang Petroleum Science & Technology, 2009, 19(4):22-25.]

    Google Scholar

    [16] He X G, Xie S R, Gu L J, et al. High-resolution quasi-distributed temperature and pressure sensing system for deep-sea reservoir monitoring[J]. Measurement, 2022, 199:111568. doi: 10.1016/j.measurement.2022.111568

    CrossRef Google Scholar

    [17] Chee S, Leokprasirtkul T, Kanno T, et al. A deepwater sandface monitoring system for offshore gas hydrate[C]//Offshore Technology Conference. Houston, Texas , 2014.

    Google Scholar

    [18] Schwenk M, Katzir A, Mizaikoff B. Mid-infrared fiber-optic evanescent field spectroscopy for in situ monitoring of tetrahydrofuran hydrate formation and dissociation[J]. The Analyst, 2017, 142(5):740-744. doi: 10.1039/C6AN02237E

    CrossRef Google Scholar

    [19] 刘康, 朱渊, 陈国明, 等. 天然气水合物开采井筒温度监测实验[J]. 实验室研究与探索, 2019, 38(10):76-79,161 doi: 10.3969/j.issn.1006-7167.2019.10.020

    CrossRef Google Scholar

    LIU Kang, ZHU Yuan, CHEN Guoming, et al. Experimental study on wellbore monitoring of methane hydrate[J]. Research and Exploration in Laboratory, 2019, 38(10):76-79,161.] doi: 10.3969/j.issn.1006-7167.2019.10.020

    CrossRef Google Scholar

    [20] 陈强, 刘琨, 梁宇, 等. 天然气水合物开采井CH4-CO2光纤气体传感监测仪器研发[J]. 海洋地质前沿, 2021, 37(10):78-84

    Google Scholar

    CHEN Qiang, LIU Kun, LIANG Yu, et al. Development of CH4-CO2 optical fiber gas sensor monitoring instrument for natural gas hydrate production well[J]. Marine Geology Frontiers, 2021, 37(10):78-84.]

    Google Scholar

    [21] He X G, Wu X M, Wang L, et al. Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area, China[J]. China Geology, 2022, 5(2):322-329.

    Google Scholar

    [22] Longo J P N, Galvao J R, Antes T, et al. Sensing hydrates in pipes by a combined electrical and optical fiber sensor[J]. IEEE Sensors Journal, 2020, 20(9):5012-5018. doi: 10.1109/JSEN.2020.2966086

    CrossRef Google Scholar

    [23] Qian H F, Wang X C, Chen X L, et al. Research on noise suppression technology of marine optical fiber towed streamer seismic data based on ResUNet[J]. Energies, 2022, 15(9):3362. doi: 10.3390/en15093362

    CrossRef Google Scholar

    [24] Chen M T, Li Y L, Zhang Y J, et al. Recent advances in creep behaviors characterization for hydrate-bearing sediment[J]. Renewable and Sustainable Energy Reviews, 2023, 183:113434. doi: 10.1016/j.rser.2023.113434

    CrossRef Google Scholar

    [25] Chen M T, Li Y L, Zhang P H, et al. Numerical simulation of failure properties of interbedded hydrate-bearing sediment and their implications on field exploitation[J]. Ocean Engineering, 2023, 274:114030. doi: 10.1016/j.oceaneng.2023.114030

    CrossRef Google Scholar

    [26] 施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019:12-20

    Google Scholar

    SHI Bin, ZHANG Dan, ZHU Honghu. Distributed Fiber Optic Sensing for Geoengineering Monitoring[M]. Beijing: Science Press, 2019: 12-20.]

    Google Scholar

    [27] Li Y L, Chen M T, Guang S X, et al. “Ladetes”—A novel device to test deformation behaviors of hydrate-bearing sediments[J]. Review of Scientific Instruments, 2022, 93(12):125004. doi: 10.1063/5.0120205

    CrossRef Google Scholar

    [28] Faichnie D M, Graham A, McStay D. The application of fibre optic temperature sensing for under insulation monitoring of subsea infrastructure[C]//Proceedings Volume 7726, Optical Sensing and Detection. Brussels, Belgium: SPIE, 2010: 522-528.

    Google Scholar

    [29] Liu Z Y, Zhang S Q, Yang C K, et al. Submarine optical fiber sensing system for the real-time monitoring of depth, vibration, and temperature[J]. Frontiers in Marine Science, 2022, 9:922669. doi: 10.3389/fmars.2022.922669

    CrossRef Google Scholar

    [30] Teng Y, Wang P F, Zhou Y B, et al. Potential applications of distributed optical fiber sensor in hydrate-induced sedimentary deformation research[J]. Energy Science & Engineering, 2022, 10(1):4-12.

    Google Scholar

    [31] 范好好, 赵强, 杜大伟, 等. 高抗噪光纤光栅波峰计数式位移传感器[J]. 光学学报, 2024, 53(6):0606003 doi: 10.3788/gzxb20245306.0606003

    CrossRef Google Scholar

    FAN Haohao, ZHAO Qiang, DU Dawei, et al. High anti-noise displacement sensor base on fiber Bragg grating peak counting[J]. Acta Photonica Sinica, 2024, 53(6):0606003.] doi: 10.3788/gzxb20245306.0606003

    CrossRef Google Scholar

    [32] Faichnie D M, Graham A, Costello L, et al. Use of fibre sensors for temperature measurement in subsea infrastructure to monitor flow-loop cool-down[J]. Journal of Physics: Conference Series, 2009, 178(1):012018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views(88) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint