2025 Vol. 45, No. 3
Article Contents

LI Yuejing, ZHANG Yangyang, LI Yaoming, ZHANG Dongliang. Quantitative reconstruction of precipitation changes in the Altai Mountains over the past two thousand years based on pollen analysis[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 157-165. doi: 10.16562/j.cnki.0256-1492.2024041701
Citation: LI Yuejing, ZHANG Yangyang, LI Yaoming, ZHANG Dongliang. Quantitative reconstruction of precipitation changes in the Altai Mountains over the past two thousand years based on pollen analysis[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 157-165. doi: 10.16562/j.cnki.0256-1492.2024041701

Quantitative reconstruction of precipitation changes in the Altai Mountains over the past two thousand years based on pollen analysis

More Information
  • To predict future precipitation trends in Xinjiang, better understanding the regional precipitation on long time scales is important for the regional paleoenvironmental research. The precipitation changes in the Altai Mountains over the past 2 000 years were quantitatively reconstructed based on palynological data from the Yushekule Peat that collected from an 88 cm long drill core at the south piedmont of the Altai Mountains in north Xinjiang and 627 modern topsoil samples collected in nearby 800 km-ranged areas using a modern analogue technique (MAT) method. Results show that the precipitation in the Yushekule Peat fluctuated between 132 mm and 300 mm, from a wet period (ca. 224 mm) during 0—1010 AD to a dry period (ca. 182 mm) during 1010—2000 AD. The maximum precipitation occurred at 750 AD (ca. 300 mm) and the minimum at 1910 AD (ca. 132 mm). Combined with the temperature data recorded in tree ring in the Altai Mountains, the hydrothermal model in the past 2000 years demonstrated an evolution process from warm-wet, cold-wet, warm-dry, cold-dry, to warm-wet under the influence of the southward shift of westerlies caused by NAO and solar radiation changes. This study contributes to a deeper understanding of the mechanisms and patterns of climate change in the Altai Mountains, and provides an important reference for future climate prediction.

  • 加载中
  • [1] Tarasov P, Dorofeyuk N, ‘Tseva E M. Holocene vegetation and climate changes in Hoton-Nur Basin, northwest Mongolia[J]. Boreas, 2000, 29(2):117-126.

    Google Scholar

    [2] Rudaya N, Tarasov P, Dorofeyuk N et al. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia[J]. Quaternary Science Reviews, 2009, 28(5-6):540-554. doi: 10.1016/j.quascirev.2008.10.013

    CrossRef Google Scholar

    [3] Chen F H, Chen J H, Huang W et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192:337-354. doi: 10.1016/j.earscirev.2019.03.005

    CrossRef Google Scholar

    [4] Büntgen U, Myglan V S, Ljungqvist F C et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD[J]. Nature Geoscience, 2016, 9(3):231-236. doi: 10.1038/ngeo2652

    CrossRef Google Scholar

    [5] Fang K Y, Davi N, Gou X H et al. Spatial drought reconstructions for central High Asia based on tree rings[J]. Climate Dynamics, 2010, 35(6):941-951. doi: 10.1007/s00382-009-0739-9

    CrossRef Google Scholar

    [6] Aizen V B, Aizen E M, Joswiak D R et al. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet)[J]. Annals of Glaciology, 2006, 43:49-60. doi: 10.3189/172756406781812078

    CrossRef Google Scholar

    [7] Li Y, Qiang M R, Zhang J W et al. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China[J]. Quaternary International, 2017, 452:91-101. doi: 10.1016/j.quaint.2016.07.053

    CrossRef Google Scholar

    [8] Chen F H, Huang X Z, Zhang J W et al. Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China[J]. Science in China Series D: Earth Sciences, 2006, 49(12):1280-1290. doi: 10.1007/s11430-006-2027-4

    CrossRef Google Scholar

    [9] Liu W G, Liu Z H, An Z S et al. Wet climate during the ‘Little Ice Age’ in the arid Tarim Basin, northwestern China[J]. The Holocene, 2011, 21(3):409-416. doi: 10.1177/0959683610378881

    CrossRef Google Scholar

    [10] Chen F H, Chen J H, Holmes J et al. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29(7-8):1055-1068. doi: 10.1016/j.quascirev.2010.01.005

    CrossRef Google Scholar

    [11] Putnam A E, Putnam D E, Andreu-Hayles L et al. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire[J]. Quaternary Science Reviews, 2016, 131:33-50. doi: 10.1016/j.quascirev.2015.10.033

    CrossRef Google Scholar

    [12] Song M, Zhou A F, Zhang X N et al. Solar imprints on Asian inland moisture fluctuations over the last millennium[J]. The Holocene, 2015, 25(12):1935-1943. doi: 10.1177/0959683615596839

    CrossRef Google Scholar

    [13] Huang X T, Oberhänsli H, von Suchodoletz H et al. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years[J]. Quaternary Science Reviews, 2011, 30(25-26):3661-3674. doi: 10.1016/j.quascirev.2011.09.011

    CrossRef Google Scholar

    [14] Willis K S, Beilman D, Booth R K et al. Peatland paleohydrology in the southern West Siberian Lowlands: comparison of multiple testate amoeba transfer functions, sites, and Sphagnum δ13C values[J]. The Holocene, 2015, 25(9):1425-1436. doi: 10.1177/0959683615585833

    CrossRef Google Scholar

    [15] Yang Y P, Zhang D L, Lan B et al. Peat δ13Ccelluose-signified moisture variations over the past ~2200 years in the southern Altai Mountains, northwestern China[J]. Journal of Asian Earth Sciences, 2019, 174:59-67. doi: 10.1016/j.jseaes.2018.11.019

    CrossRef Google Scholar

    [16] Zhang D L, Yang Y P, Ran M et al. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Frontiers of Earth Science, 2022, 16(2):513-522. doi: 10.1007/s11707-021-0906-9

    CrossRef Google Scholar

    [17] 兰波. 过去2 000 a新疆北部的湿度变化及其控制机理[D]. 中国科学院新疆生态与地理研究所博士学位论文, 2017

    Google Scholar

    LAN Bo. Moisture variations in northern Xinjiang and the modulating mechanisms during past 2000 years[D]. Doctor Dissertation of Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, 2017.]

    Google Scholar

    [18] 努尔巴依·阿布都沙力克, 叶勒波拉提·托流汉, 孔琼英. 阿勒泰地区沼泽湿地调查研究[J]. 乌鲁木齐职业大学学报, 2008, 17(1):8-13 doi: 10.3969/j.issn.1009-3397.2008.01.003

    CrossRef Google Scholar

    Abdusalih N, Tolewhan E, KONG Qiongying. Swamp wetland research in Altay prefecture[J]. Journal of Urumqi Vocational University, 2008, 17(1):8-13.] doi: 10.3969/j.issn.1009-3397.2008.01.003

    CrossRef Google Scholar

    [19] Tian F, Wang W, Rudaya N et al. Wet mid–late Holocene in central Asia supported prehistoric intercontinental cultural communication: clues from pollen data[J]. CATENA, 2022, 209:105852. doi: 10.1016/j.catena.2021.105852

    CrossRef Google Scholar

    [20] Huang X Z, Peng W, Rudaya N et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13):6628-6636. doi: 10.1029/2018GL078028

    CrossRef Google Scholar

    [21] Feng Z D, Sun A Z, Abdusalih N et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. The Holocene, 2017, 27(5):683-693. doi: 10.1177/0959683616670469

    CrossRef Google Scholar

    [22] Blaauw M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518. doi: 10.1016/j.quageo.2010.01.002

    CrossRef Google Scholar

    [23] Faegri K, Kaland P E, Krzywinski K. Textbook of Pollen Analysis[M]. 4th ed. Chichester: Wiley, 1989.

    Google Scholar

    [24] 王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995

    Google Scholar

    WANG Fuxiong, QIAN Nanfen, ZHANG Yulong et al. Pollen Flora of China[M]. 2nd ed. Beijing: Science Press, 1995.]

    Google Scholar

    [25] 陈海燕, 徐德宇, 廖梦娜, 等. 中国现代花粉数据集[J]. 植物生态学报, 2021, 45(7):799-808 doi: 10.17521/cjpe.2021.0024

    CrossRef Google Scholar

    CHEN Haiyan, XU Deyu, LIAO Mengna et al. A modern pollen dataset of China[J]. Chinese Journal of Plant Ecology, 2021, 45(7):799-808.] doi: 10.17521/cjpe.2021.0024

    CrossRef Google Scholar

    [26] Cao X Y, Tian F, Ding W. Improving the quality of pollen-climate calibration-sets is the primary step for ensuring reliable climate reconstructions[J]. Science Bulletin, 2018, 63(20):1317-1318. doi: 10.1016/j.scib.2018.09.007

    CrossRef Google Scholar

    [27] Cao X Y, Tian F, Telford R J et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation[J]. Quaternary Science Reviews, 2017, 178:37-53. doi: 10.1016/j.quascirev.2017.10.030

    CrossRef Google Scholar

    [28] Cao X Y, Tian F, Herzschuh U et al. Human activities have reduced plant diversity in eastern China over the last two millennia[J]. Global Change Biology, 2022, 28(16):4962-4976. doi: 10.1111/gcb.16274

    CrossRef Google Scholar

    [29] Cao X Y, Tian F, Xu Q H et al. Modern pollen dataset for Asia[EB/OL]. (2022-05-21). https://doi.org/10.11888/Paleoenv.tpdc.272378.

    Google Scholar

    [30] Juggins S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science?[J]. Quaternary Science Reviews, 2013, 64:20-32. doi: 10.1016/j.quascirev.2012.12.014

    CrossRef Google Scholar

    [31] 崔安宁, 吕厚远, 侯居峙, 等. 青藏高原湖泊纹层孢粉记录的过去2 000 a雨季时长和雨季降水时空变化[J]. 中国科学: 地球科学, 2024, 54(3): 808-820

    Google Scholar

    CUI Anning, LV Houyuan, HOU Juzhi et al. Spatiotemporal variation of rainy season span and precipitation recorded by lacustrine laminated pollen in the Tibetan Plateau during the past two millennia[J]. Science China Earth Sciences, 2024, 67(3): 789-801.]

    Google Scholar

    [32] 梁琛, 赵艳, 秦锋, 等. 孢粉-气候定量重建方法体系的建立及其应用: 以青藏高原东部全新世温度重建为例[J]. 中国科学: 地球科学, 2020, 50(7): 977-994

    Google Scholar

    LIANG Chen, ZHAO Yan, QIN Feng et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Science China Earth Sciences, 2020, 63(8): 1144-1160.]

    Google Scholar

    [33] Chen F H, Yu Z C, Yang M L et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4):351-364. doi: 10.1016/j.quascirev.2007.10.017

    CrossRef Google Scholar

    [34] Büntgen U, Urban O, Krusic P J et al. Recent European drought extremes beyond Common Era background variability[J]. Nature Geoscience, 2021, 14(4):190-196. doi: 10.1038/s41561-021-00698-0

    CrossRef Google Scholar

    [35] Faust J C, Fabian K, Milzer G et al. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years[J]. Earth and Planetary Science Letters, 2016, 435:84-93. doi: 10.1016/j.jpgl.2015.12.003

    CrossRef Google Scholar

    [36] Xu G B, Liu X H, Qin D H et al. Drought history inferred from tree ring δ13C and δ18O in the central Tianshan Mountains of China and linkage with the North Atlantic Oscillation[J]. Theoretical and Applied Climatology, 2014, 116(3-4):385-401. doi: 10.1007/s00704-013-0958-1

    CrossRef Google Scholar

    [37] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19):L19704.

    Google Scholar

    [38] Lan J H, Xu H, Lang Y C et al. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age[J]. Geology, 2020, 48(4):307-312. doi: 10.1130/G46811.1

    CrossRef Google Scholar

    [39] Li W, Mu G J, Lin Y C et al. Abrupt climatic shift at ~4000 cal. yr B. P. and late Holocene climatic instability in arid Central Asia: evidence from Lop Nur saline lake in Xinjiang, China[J]. Science of the Total Environment, 2021, 784:147202. doi: 10.1016/j.scitotenv.2021.147202

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(74) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint