2023 Vol. 43, No. 5
Article Contents

HU Yanbin, LAI Zhiqing, LI Meng, QIAO Zewen, ZHAO Guangtao, HAN Zongzhu, GUO Kun. Progress of the researches on magmatism in the Mariana Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 64-72. doi: 10.16562/j.cnki.0256-1492.2023091601
Citation: HU Yanbin, LAI Zhiqing, LI Meng, QIAO Zewen, ZHAO Guangtao, HAN Zongzhu, GUO Kun. Progress of the researches on magmatism in the Mariana Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 64-72. doi: 10.16562/j.cnki.0256-1492.2023091601

Progress of the researches on magmatism in the Mariana Trough

More Information
  • The Western Pacific subduction zone is one of the most typical and active ones in the world, featuring a vast distribution of trench-island arc-back-arc basin systems. The Mariana subduction zone is a typical ocean-ocean subduction zone, and the Mariana Trough is an important component tectonic unit and an ideal area to elucidate the subduction without the influence of continental crust materials. The magmatic processes of the Mariana Trough were studied in detail, such as rock mantle source properties, subduction components, and magmatic evolution. The research clarified that: (1) the magma source in the Mariana Trough is mostly depleted mantle as it features peridotite dominance and the degree of partial melting of the source mantle varies in different regions. (2) The subduction components from altered oceanic crust and sediments in different parts are affected to different degrees of mantle melting and initial magma composition in different regions. (3) The influence of subduction components gradually increased from the middle section to the north and south sections. The middle section was mainly affected by melt from sediments, and the south and north sections were more significantly affected by hydrous fluids. (4) During the magma evolution in different regions or even in the same region, the fractional crystallization of olivine, pyroxene, and plagioclase can well explain the diverse rock types and different phenocryst assemblages in basaltic rocks. The achievements above could promote the understanding of the magmatism process in the Mariana Trough and also strengthen the deep understanding of tectonic-magmatism in the subduction zone.

  • 加载中
  • [1] 曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动[J]. 海洋科学集刊, 2016(51):3-36

    Google Scholar

    ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, et al. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific[J]. Studia Marina Sinica, 2016(51):3-36.

    Google Scholar

    [2] 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7):737-750

    Google Scholar

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7):737-750.

    Google Scholar

    [3] 刘鑫, 李三忠, 赵淑娟, 等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4):329-340

    Google Scholar

    LIU Xin, LI Sanzhong, ZHAO Shujuan, et al. Structure of the Mariana subduction system[J]. Earth Science Frontiers, 2017, 24(4):329-340.

    Google Scholar

    [4] Tian L Y, Zhao G T, Zhao G C, et al. Geochemistry of basaltic lavas from the Mariana Trough: evidence for influence of subduction component on the generation of backarc basin magmas[J]. International Geology Review, 2005, 47(4):387-397. doi: 10.2747/0020-6814.47.4.387

    CrossRef Google Scholar

    [5] Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497:146-161. doi: 10.1016/j.chemgeo.2018.09.002

    CrossRef Google Scholar

    [6] Zhang Y X, Zeng Z G, Gaetani G, et al. Mineralogical constraints on the magma mixing beneath the Iheya Graben, an active back-arc spreading Centre of the Okinawa trough[J]. Journal of Petrology, 2020, 61(9):egaa098.

    Google Scholar

    [7] 李晓辉, 杨慧心, 曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1):166-179

    Google Scholar

    LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1):166-179.

    Google Scholar

    [8] Fryer P. Geology of the Mariana trough[M]//Taylor B. Backarc Basins: Tectonics and Magmatism. New York: Springer, 1995: 237-279.

    Google Scholar

    [9] Lai Z Q, Zhao G T, Han Z Z, et al. The magma plumbing system in the Mariana Trough back-arc basin at 18° N[J]. Journal of Marine Systems, 2018, 180:132-139. doi: 10.1016/j.jmarsys.2016.11.008

    CrossRef Google Scholar

    [10] Zhao G T, Luo W Q, Lai Z Q, et al. Influence of subduction components on magma composition in back‐arc basins: a comparison between the Mariana and Okinawa troughs[J]. Geological Journal, 2016, 51(S1):357-367. doi: 10.1002/gj.2820

    CrossRef Google Scholar

    [11] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc–basin system: implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7):Q07006.

    Google Scholar

    [12] Anderson M O, Chadwick W W Jr, Hannington M D, et al. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6):2240-2274. doi: 10.1002/2017GC006813

    CrossRef Google Scholar

    [13] Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of the axial ridge of the Mariana Trough backarc spreading center[J]. Earth and Planetary Science Letters, 1990, 100(1-3):226-250. doi: 10.1016/0012-821X(90)90187-3

    CrossRef Google Scholar

    [14] Lai Z Q, Gao W, Han Z Z, et al. Mineralogical and geochemical constraints on the mantle source characteristics of basaltic lavas from the central Mariana Trough[J]. Journal of Ocean University of China, 2023, 22(5):1313-1325. doi: 10.1007/s11802-023-5449-0

    CrossRef Google Scholar

    [15] Martínez F, Fryer P, Baker N A, et al. Evolution of backarc rifting: Mariana Trough, 20°-24°N[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B3):3807-3827. doi: 10.1029/94JB02466

    CrossRef Google Scholar

    [16] Stern R J, Bloomer S H, Martinez F, et al. The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: a first report[J]. Island Arc, 1996, 5(3):354-372. doi: 10.1111/j.1440-1738.1996.tb00036.x

    CrossRef Google Scholar

    [17] Michibayashi K, Ohara Y, Stern R J, et al. Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: results of a Shinkai 6500 dive[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(5):Q05X06. doi: 10.1029/2008GC002197

    CrossRef Google Scholar

    [18] Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60(12):2153-2166. doi: 10.1016/0016-7037(96)00078-6

    CrossRef Google Scholar

    [19] 高永军, 穆治国, 吴世迎. 马里亚纳海槽玄武岩K-Ar地质年代学及地球化学研究[J]. 海洋地质与第四纪地质, 2000, 20(3):53-59

    Google Scholar

    GAO Yongjun, MU Zhiguo, WU Shiying. Studies on K-Ar geochronology and geochemistry of Mariana Trough basalts[J]. Marine Geology & Quaternary Geology, 2000, 20(3):53-59.

    Google Scholar

    [20] Yan Q S, Zhang P Y, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes[J]. Mineralogy and Petrology, 2019, 113(6):803-820. doi: 10.1007/s00710-019-00683-x

    CrossRef Google Scholar

    [21] 张国良, 罗青, 陈立辉. 大洋地幔化学组成不均一性成因研究回顾及展望[J]. 海洋地质与第四纪地质, 2017, 37(1):1-13

    Google Scholar

    ZHANG Guoliang, LUO Qing, CHEN Lihui. Geochemical heterogeneity of oceanic mantle: a review[J]. Marine Geology & Quaternary Geology, 2017, 37(1):1-13.

    Google Scholar

    [22] Rubin K H, Sinton J M, Maclennan J, et al. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes[J]. Nature Geoscience, 2009, 2(5):321-328. doi: 10.1038/ngeo504

    CrossRef Google Scholar

    [23] Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington: American Geophysical Union, 2006: 63-86.

    Google Scholar

    [24] Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and a recycled component in backarc basin mantle[J]. Earth and Planetary Science Letters, 1990, 100(1-3):251-264. doi: 10.1016/0012-821X(90)90188-4

    CrossRef Google Scholar

    [25] Woodhead J, Stern R J, Pearce J, et al. Hf-Nd isotope variation in Mariana Trough basalts: the importance of “ambient mantle” in the interpretation of subduction zone magmas[J]. Geology, 2012, 40(6):539-542. doi: 10.1130/G32963.1

    CrossRef Google Scholar

    [26] Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB): trace element and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-like melts[J]. Earth and Planetary Science Letters, 1987, 82(3-4):241-254. doi: 10.1016/0012-821X(87)90199-3

    CrossRef Google Scholar

    [27] Hawkins J W, Melchior J T. Petrology of Mariana Trough and Lau basin basalts[J]. Journal of Geophysical Research, 1985, 90(B13):11431-11468. doi: 10.1029/JB090iB13p11431

    CrossRef Google Scholar

    [28] 来志庆. 马里亚纳海槽中段深部岩浆作用过程研究[D]. 中国海洋大学博士学位论文, 2019

    Google Scholar

    LAI Zhiqing. Magma formation and evolution in the Middle Mariana Trough[D]. Doctor Dissertation of Ocean University of China, 2019.

    Google Scholar

    [29] Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[M]//Eiler J. Inside the Subduction Factory. Washington: American Geophysical Union, 2004: 175-222.

    Google Scholar

    [30] Pearce J A, Kempton P D, Nowell G M, et al. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems[J]. Journal of Petrology, 1999, 40(11):1579-1611. doi: 10.1093/petroj/40.11.1579

    CrossRef Google Scholar

    [31] Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1-2):53-72. doi: 10.1016/j.jpgl.2004.12.005

    CrossRef Google Scholar

    [32] Gribble R F, Stern R J, Newman S, et al. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magmagenesis in back-arc basins[J]. Journal of Petrology, 1998, 39(1):125-154. doi: 10.1093/petroj/39.1.125

    CrossRef Google Scholar

    [33] Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9):B09208.

    Google Scholar

    [34] 曹志敏, 安伟, 周美夫, 等. 马里亚纳海槽扩张轴(中心)玄武岩铂族元素特征[J]. 海洋学报, 2006, 28(5):69-75

    Google Scholar

    CAO Zhimin, AN Wei, ZHOU Meifu, et al. Characteristics of platinum-group elements in Mariana Trough basalts[J]. Acta Oceanologica Sinica, 2006, 28(5):69-75.

    Google Scholar

    [35] Ohara Y, Stern R J, Ishii T, et al. Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin[J]. Contributions to Mineralogy and Petrology, 2002, 143(1):1-18. doi: 10.1007/s00410-001-0329-2

    CrossRef Google Scholar

    [36] Sinton J M, Fryer P. Mariana Trough lavas from 18°N: implications for the origin of back arc basin basalts[J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B12):12782-12802. doi: 10.1029/JB092iB12p12782

    CrossRef Google Scholar

    [37] Li X H, Yan Q S, Zeng Z G, et al. Across-arc variations in Mo isotopes and implications for subducted oceanic crust in the source of back-arc basin volcanic rocks[J]. Geology, 2021, 49(10):1165-1170. doi: 10.1130/G48754.1

    CrossRef Google Scholar

    [38] Wiens D A, Kelley K A, Plank T. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry[J]. Earth and Planetary Science Letters, 2006, 248(1-2):30-42. doi: 10.1016/j.jpgl.2006.04.011

    CrossRef Google Scholar

    [39] Matsuno T, Seama N, Shindo H P, et al. Enhanced and asymmetric melting beneath the southern Mariana back-arc spreading center under the influence of Pacific plate subduction[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(3):e2021JB022374. doi: 10.1029/2021JB022374

    CrossRef Google Scholar

    [40] Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4):3-1-3-13.

    Google Scholar

    [41] Yan Q S, Meng X W, Shi X F. Geochemical and Sr-Nd-Hf-Pb isotopic constraints the petrogenesis and origin of basalts from the southern Okinawa Trough[J]. Acta Geologica Sinica:English Edition, 2019, 93(S2):116-119. doi: 10.1111/1755-6724.14216

    CrossRef Google Scholar

    [42] Ikeda Y, Nagao K, Ishii T, et al. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc–Trough system: evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics[J]. Island Arc, 2016, 25(4):253-273. doi: 10.1111/iar.12150

    CrossRef Google Scholar

    [43] Masuda H, Fryer P. Geochemical characteristics of active backarc basin volcanism at the southern end of the Mariana Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 261-273.

    Google Scholar

    [44] Chen Z X, Chen J B, Zeng Z G, et al. Zinc isotopes of the Mariana and Ryukyu arc-related lavas reveal recycling of forearc serpentinites into the subarc mantle[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(11):e2021JB022261. doi: 10.1029/2021JB022261

    CrossRef Google Scholar

    [45] 徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 2020, 50(12): 1818-1844

    Google Scholar

    XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 63(12): 1969-1991.

    Google Scholar

    [46] Ribeiro J M, Stern R J, Martinez F, et al. Asthenospheric outflow from the shrinking Philippine Sea Plate: evidence from Hf–Nd isotopes of southern Mariana lavas[J]. Earth and Planetary Science Letters, 2017, 478:258-271. doi: 10.1016/j.jpgl.2017.08.022

    CrossRef Google Scholar

    [47] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [48] Niu Y L, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective[J]. Journal of Petrology, 2003, 44(5):851-866. doi: 10.1093/petrology/44.5.851

    CrossRef Google Scholar

    [49] 张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(2):234-248

    Google Scholar

    ZHANG Pingyang, YAN Quanshu. Compositions of plagioclase hosted by basaltic rocks from the Mariana Trough and their petrogenesis significances[J]. Advances in Marine Science, 2017, 35(2):234-248.

    Google Scholar

    [50] Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(1):1013.

    Google Scholar

    [51] Newman S, Macdougall J D, Finkel R C. 230Th-238U disequilibrium in island arcs: evidence from the Aleutians and the Marianas[J]. Nature, 1984, 308(5956):268-270. doi: 10.1038/308268a0

    CrossRef Google Scholar

    [52] 孙海青, 高爱国, 倪培, 等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004, 22(3):292-298

    Google Scholar

    SUN Haiqing, GAO Aiguo, NI Pei, et al. A preliminary study on melt inclusions in basalts from the Mariana Trough[J]. Advances in Marine Science, 2004, 22(3):292-298.

    Google Scholar

    [53] Chen Z X, Chen J B, Tamehe L S, et al. Light Fe isotopes in arc magmas from cold subduction zones: implications for serpentinite-derived fluids oxidized the sub-arc mantle[J]. Geochimica et Cosmochimica Acta, 2023, 342:1-14. doi: 10.1016/j.gca.2022.12.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1398) PDF downloads(62) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint