2023 Vol. 43, No. 3
Article Contents

SU Ming, WANG Yixuan, CHEN Hui, LIU Shan, XIE Xinong, ZHANG Xiaobo, CHANG Jinglong, MENG Fansheng, ZHOU Haitao, LUAN Kunxiang, ZHUO Haiteng, WANG Ce, LEI Yaping. Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 61-73. doi: 10.16562/j.cnki.0256-1492.2023052201
Citation: SU Ming, WANG Yixuan, CHEN Hui, LIU Shan, XIE Xinong, ZHANG Xiaobo, CHANG Jinglong, MENG Fansheng, ZHOU Haitao, LUAN Kunxiang, ZHUO Haiteng, WANG Ce, LEI Yaping. Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 61-73. doi: 10.16562/j.cnki.0256-1492.2023052201

Depositional mode for the seamount-terrace-canyon sedimentary combination under the impacts of intermediate and deep circulation dynamics in the northern margin of the South China Sea

More Information
  • As a natural laboratory for studying energy and material exchange at water-rock interfaces, the northern slope area of the South China Sea possesses complex geomorphology, such as uplifted seamounts, flat terraces, and depressed canyons. It also develops various types of deep-water depositional systems, including gravity flow slides/slumps, turbidity currents, and contouritic deposits. Based on high-resolution bathymetry and seismic reflection data, CTD data, as well as published results from marine sedimentology and physical oceanic numerical simulations, this study focuses on analyzing the seamount-terrace-canyon sedimentary combination under intermediate and deep circulation bottom currents on the South China Sea northern margins. This study identifies the seamount-related moat-drift systems, the erosional/sheeted-nondepositional/seamount related contourite terraces, the plastered drifts, as well as the steep slopes with slides/slumps and canyons. This research reveals the coupling relationship between these deep-water sedimentary combinations and the hydrodynamic patterns among the intermediate and deep circulations. The findings obtained have significant implications for further understanding of the response of deep-water depositional processes to intermediate and deep circulation hydrodynamics and their impact on shaping continental margin morphology.

  • 加载中
  • [1] 汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质, 2009, 29(4):1-11

    Google Scholar

    WANG Pinxian. Deep sea sediments and Earth system [J]. Marine Geology & Quaternary Geology, 2009, 29(4): 1-11.

    Google Scholar

    [2] 田纪伟, 曲堂栋. 南海深海环流研究进展[J]. 科学通报, 2012, 57(24):3115-3120 doi: 10.1007/s11434-012-5269-x

    CrossRef Google Scholar

    TIAN Jiwei, QU Tangdong. Advances in research on the deep South China Sea circulation [J]. Chinese Science Bulletin, 2012, 57(24): 3115-3120. doi: 10.1007/s11434-012-5269-x

    CrossRef Google Scholar

    [3] Mulder T, Hüneke H, Van Loon A J. Progress in deep-sea sedimentology[M]//Hüneke H, Mulder T. Deep-Sea Sediments: Developments in Sedimentology. Amsterdam: Elsevier, 2011: 1-24.

    Google Scholar

    [4] Micallef A, Krastel S, Savini A. Submarine Geomorphology[M]. Cham: Springer, 2018.

    Google Scholar

    [5] Stow D A V, Faugères J C, Howe J A, et al. Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art[C]//Stow D A V, Pudsey C J, Howe J A, et al. Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. London: Geological Society of London, 2002: 7-20.

    Google Scholar

    [6] Rebesco M, Camerlenghi A, Van Loon A J. Contourite research: a field in full development[C]//Rebesco M, Camerlenghi A. Contourites: Developments in Sedimentology. Amsterdam: Elsevier, 2008: 1-10.

    Google Scholar

    [7] 高抒. 海洋沉积地质过程模拟: 性质与问题及前景[J]. 海洋地质与第四纪地质, 2011, 31(5):1-7

    Google Scholar

    GAO Shu. Numerical modeling of marine sedimentary processes: the nature, scientific problems, and prospect [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7.

    Google Scholar

    [8] Hernández-Molina F J, Serra N, Stow D A V, et al. Along-slope oceanographic processes and sedimentary products around the Iberian margin [J]. Geo-Marine Letters, 2011, 31(5): 315-341.

    Google Scholar

    [9] Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011

    CrossRef Google Scholar

    [10] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义: 国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12):1287-1296

    Google Scholar

    ZHAO Yulong, LIU Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance: the contribution of international ocean drilling to the studies of contourites [J]. Advances in Earth Science, 2017, 32(12): 1287-1296.

    Google Scholar

    [11] 吴立新. 气候变暖背景下全球平均海洋环流在加速[J]. 中国科学:地球科学, 2020, 63(7):1039-1040 doi: 10.1007/s11430-020-9610-9

    CrossRef Google Scholar

    WU Lixin. Acceleration of global mean ocean circulation under the climate warming [J]. Science in China:Earth Sciences, 2020, 63(7): 1039-1040. doi: 10.1007/s11430-020-9610-9

    CrossRef Google Scholar

    [12] Chen H, Xie X N, Van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2014, 355: 36-53. doi: 10.1016/j.margeo.2014.05.008

    CrossRef Google Scholar

    [13] Chen H, Xie X N, Zhang W Y, et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2016, 378: 101-113. doi: 10.1016/j.margeo.2015.11.002

    CrossRef Google Scholar

    [14] Chen H, Zhang W Y, Xie X N, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea [J]. Marine Geology, 2019, 409: 48-66. doi: 10.1016/j.margeo.2018.12.012

    CrossRef Google Scholar

    [15] Delivet S, Van Eetvelt B, Monteys X, et al. Seismic geomorphological reconstructions of Plio-Pleistocene bottom current variability at Goban Spur [J]. Marine Geology, 2016, 378: 261-275. doi: 10.1016/j.margeo.2016.01.001

    CrossRef Google Scholar

    [16] Ribó M, Puig P, Muñoz A, et al. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean) [J]. Geomorphology, 2016, 253: 22-37. doi: 10.1016/j.geomorph.2015.09.027

    CrossRef Google Scholar

    [17] Shu Y Q, Xue H J, Wang D X, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea [J]. Scientific Reports, 2016, 6: 24338. doi: 10.1038/srep24338

    CrossRef Google Scholar

    [18] Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044

    CrossRef Google Scholar

    [19] Tang Q S, Gulick S P S, Sun J, et al. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the gulf of Alaska investigated by marine seismic survey data [J]. Journal of Geophysical Research:Oceans, 2020, 39: e2019JC015393.

    Google Scholar

    [20] Turnewitsch R, Falahat S, Nycander J, et al. Deep-sea fluid and sediment dynamics-influence of hill- to seamount-scale seafloor topography [J]. Earth-Science Reviews, 2013, 127: 203-241. doi: 10.1016/j.earscirev.2013.10.005

    CrossRef Google Scholar

    [21] Llave E, Hernández-Molina F J, Stow D A V, et al. Reconstructions of the Mediterranean Outflow Water during the Quaternary based on the study of changes in buried mounded drift stacking pattern in the Gulf of Cadiz [J]. Marine Geophysical Researches, 2007, 28(4): 379-394. doi: 10.1007/s11001-007-9040-7

    CrossRef Google Scholar

    [22] Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010

    CrossRef Google Scholar

    [23] Preu B, Hernández-Molina F J, Violante R, et al. Morphosedimentary and hydrographic features of the northern Argentine margin: the interplay between erosive, depositional and gravitational processes and its conceptual implications [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2013, 75: 157-174. doi: 10.1016/j.dsr.2012.12.013

    CrossRef Google Scholar

    [24] Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. Contourite depositional systems along the Mozambique channel: the interplay between bottom currents and sedimentary processes [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2019, 147: 79-99. doi: 10.1016/j.dsr.2019.03.012

    CrossRef Google Scholar

    [25] Rodrigues S, Roque C, Hernández-Molina F J, et al. The Sines contourite depositional system along the SW Portuguese margin: Onset, evolution and conceptual implications [J]. Marine Geology, 2020, 430: 106357. doi: 10.1016/j.margeo.2020.106357

    CrossRef Google Scholar

    [26] Yenes M, Casas D, Nespereira J, et al. The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach to stability analysis [J]. Marine Geology, 2021, 437: 106505. doi: 10.1016/j.margeo.2021.106505

    CrossRef Google Scholar

    [27] Miramontes E, Thiéblemont A, Babonneau N, et al. Contourite and mixed turbidite-contourite systems in the Mozambique Channel (SW Indian Ocean): link between geometry, sediment characteristics and modelled bottom currents [J]. Marine Geology, 2021, 437: 106502. doi: 10.1016/j.margeo.2021.106502

    CrossRef Google Scholar

    [28] Hernández-Molina F J, Wåhlin A, Bruno M, et al. Oceanographic processes and morphosedimentary products along the Iberian margins: A new multidisciplinary approach [J]. Marine Geology, 2016, 378: 127-156. doi: 10.1016/j.margeo.2015.12.008

    CrossRef Google Scholar

    [29] Hernández-Molina F J, Campbell S, Badalini G, et al. Large bedforms on contourite terraces: Sedimentary and conceptual implications [J]. Geology, 2018, 46(1): 27-30. doi: 10.1130/G39655.1

    CrossRef Google Scholar

    [30] Steinmann L, Baques M, Wenau S, et al. Discovery of a giant cold-water coral mound province along the northern Argentine margin and its link to the regional Contourite Depositional System and oceanographic setting [J]. Marine Geology, 2020, 427: 106223. doi: 10.1016/j.margeo.2020.106223

    CrossRef Google Scholar

    [31] Shanmugam G. A preliminary experimental study of turbidite fan deposits: discussion [J]. Journal of Sedimentary Research, 2003, 73(5): 838-839. doi: 10.1306/101002730838

    CrossRef Google Scholar

    [32] Moscardelli L, Wood L. New classification system for mass transport complexes in offshore Trinidad [J]. Basin Research, 2008, 20(1): 73-98. doi: 10.1111/j.1365-2117.2007.00340.x

    CrossRef Google Scholar

    [33] Twichell D C, Roberts D G. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons [J]. Geology, 1982, 10(8): 408-412. doi: 10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2

    CrossRef Google Scholar

    [34] Farre J A, McGregor B A, Ryan W B F, et al. Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution[M]//Stanley D J, Moore G T. The Shelfbreak: Critical Interface on Continental Margins. Tulsa: SEPM, 1983, 33: 25-39.

    Google Scholar

    [35] Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins [J]. Marine Geology, 2011, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008

    CrossRef Google Scholar

    [36] 徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558

    Google Scholar

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons [J]. Advances in Earth Science, 2013, 28(5): 552-558.

    Google Scholar

    [37] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    Google Scholar

    XU Jingping. Review on the research of submarine turbidity current in one hundred years [J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.

    Google Scholar

    [38] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11):1111-1119

    Google Scholar

    ZHONG Guangfa. Current status of scientific deep-diving investigations in submarine canyons [J]. Advances in Earth Science, 2019, 34(11): 1111-1119.

    Google Scholar

    [39] Laursen J, Scholl D W, von Huene R. Neotectonic deformation of the central Chile margin: Deepwater forearc basin formation in response to hot spot ridge and seamount subduction[T]. Tectonics, 2002, 21(5): 2-1-2-27.

    Google Scholar

    [40] Antobreh A A, Krastel S. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region [J]. Marine and Petroleum Geology, 2006, 23(1): 37-59. doi: 10.1016/j.marpetgeo.2005.06.003

    CrossRef Google Scholar

    [41] Xu J P, Noble M A, Rosenfeld L K. In-situ measurements of velocity structure within turbidity currents [J]. Geophysical Research Letters, 2004, 31(9): L09311.

    Google Scholar

    [42] Xu J P, Swarzenski P W, Noble M, et al. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California [J]. Marine Geology, 2010, 269(1-2): 74-88. doi: 10.1016/j.margeo.2009.12.007

    CrossRef Google Scholar

    [43] Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan [J]. Marine Geology, 2017, 384: 147-158. doi: 10.1016/j.margeo.2016.06.001

    CrossRef Google Scholar

    [44] Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea [J]. Geology, 2018, 46(8): 675-678. doi: 10.1130/G45178.1

    CrossRef Google Scholar

    [45] Gong C L, Wang Y M, Rebesco M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? [J]. Geology, 2018, 46(6): 551-554. doi: 10.1130/G40204.1

    CrossRef Google Scholar

    [46] Miramontes E, Jouet G, Thereau E, et al. The impact of internal waves on upper continental slopes: insights from the Mozambican margin (Southwest Indian Ocean) [J]. Earth Surface Processes and Landforms, 2020, 45(6): 1469-1482. doi: 10.1002/esp.4818

    CrossRef Google Scholar

    [47] Gong C L, Wang Y M, Peng X C, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea [J]. Marine and Petroleum Geology, 2012, 32(1): 95-109. doi: 10.1016/j.marpetgeo.2011.12.005

    CrossRef Google Scholar

    [48] Gong C L, Wang Y M, Zhu W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea [J]. AAPG Bulletin, 2013, 97(2): 285-308. doi: 10.1306/07121211159

    CrossRef Google Scholar

    [49] Sun Q L, Xie X N, Piper D J W, et al. Three dimensional seismic anatomy of multi-stage mass transport deposits in the Pearl River Mouth Basin, northern South China Sea: their ages and kinematics [J]. Marine Geology, 2017, 393: 93-108. doi: 10.1016/j.margeo.2017.05.005

    CrossRef Google Scholar

    [50] Yin S R, Hernández-Molina F J, Zhang W Y, et al. The influence of oceanographic processes on contourite features: A multidisciplinary study of the northern South China Sea [J]. Marine Geology, 2019, 415: 105967. doi: 10.1016/j.margeo.2019.105967

    CrossRef Google Scholar

    [51] Alford M H, Peacock T, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea [J]. Nature, 2015, 521(7550): 65-69. doi: 10.1038/nature14399

    CrossRef Google Scholar

    [52] Zhang Y W, Liu Z F, Zhao Y L, et al. Mesoscale eddies transport deep-sea sediments [J]. Scientific Reports, 2014, 4: 5937. doi: 10.1038/srep05937

    CrossRef Google Scholar

    [53] Xie X H, Liu Q, Zhao Z X, et al. Deep sea currents driven by breaking internal tides on the continental slope [J]. Geophysical Research Letters, 2018, 45(12): 6160-6166.

    Google Scholar

    [54] Lüdmann T, Wong H K, Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments [J]. Geophysical Research Letters, 2005, 32(5): L05614.

    Google Scholar

    [55] Shao L, Li X J, Geng J H, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D:Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y

    CrossRef Google Scholar

    [56] Zhao Y L, Liu Z F, Zhang Y W, et al. In situ observation of contour currents in the northern South China Sea: applications for Deepwater sediment transport [J]. Earth and Planetary Science Letters, 2015, 430: 477-485. doi: 10.1016/j.jpgl.2015.09.008

    CrossRef Google Scholar

    [57] 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年: 发展历程、学术成就概览[J]. 海洋学报, 2019, 41(10):23-64

    Google Scholar

    WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements [J]. Acta Oceanologica Sinica, 2019, 41(10): 23-64.

    Google Scholar

    [58] Wang P X, Li Q Y. The South China Sea: Paleoceanography and Sedimentology[M]. Dordrecht: Springer, 2009: 25-73.

    Google Scholar

    [59] 谢强, 肖劲根, 王东晓, 等. 基于8个准全球模式模拟的南海深层与底层环流特征分析[J]. 科学通报, 2013, 58(32):4000-4011 doi: 10.1007/s11434-013-5791-5

    CrossRef Google Scholar

    XIE Qiang, XIAO Jingen, WANG Dongxiao, et al. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs [J]. Chinese Science Bulletin, 2013, 58(32): 4000-4011. doi: 10.1007/s11434-013-5791-5

    CrossRef Google Scholar

    [60] Shu Y Q, Xue H J, Wang D X, et al. Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08 [J]. Journal of Geophysical Research:Oceans, 2014, 119(5): 3012-3028. doi: 10.1002/2013JC009583

    CrossRef Google Scholar

    [61] Gan J P, Li H, Curchitser E N, et al. Modeling South China Sea circulation: Response to seasonal forcing regimes [J]. Journal of Geophysical Research:Oceans, 2006, 111(C6): C06034.

    Google Scholar

    [62] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves [J]. Marine Geology, 2002, 192(1-3): 7-22. doi: 10.1016/S0025-3227(02)00547-9

    CrossRef Google Scholar

    [63] Wang D X, Xiao J G, Shu Y Q, et al. Progress on deep circulation and meridional overturning circulation in the South China Sea [J]. Science China Earth Sciences, 2016, 59(9): 1827-1833. doi: 10.1007/s11430-016-5324-6

    CrossRef Google Scholar

    [64] Cai Z Y, Gan J P, Liu Z Q, et al. Progress on the formation dynamics of the layered circulation in the South China Sea [J]. Progress in Oceanography, 2020, 181: 102246. doi: 10.1016/j.pocean.2019.102246

    CrossRef Google Scholar

    [65] 朱伟林, 钟锴, 李友川, 等. 南海北部深水区油气成藏与勘探[J]. 科学通报, 2012, 57(24):3121-3129 doi: 10.1007/s11434-011-4940-y

    CrossRef Google Scholar

    ZHU Weiling, ZHONG Kai, LI Youchuan, et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins [J]. Chinese Science Bulletin, 2012, 57(24): 3121-3129. doi: 10.1007/s11434-011-4940-y

    CrossRef Google Scholar

    [66] 袁圣强. 南海北部陆坡区深水水道沉积体系研究[D]. 中国科学院海洋研究所博士学位论文, 2009: 121

    Google Scholar

    YUAN Shengqiang. Sedimentary system of deepwater channel, the slope area of Northern South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2009: 121.

    Google Scholar

    [67] 苏明. 南海北部琼东南盆地中新世以来中央峡谷体系内部构成及沉积模式[D]. 中国地质大学(武汉), 2011: 138

    Google Scholar

    SU Ming. Internal composition and depositional model of Central canyon system since Miocene in Qiongdongnan Basin northern South China Sea[D]. China University of Geosciences, 2011: 138. ] (查阅网上资料, 未找到本条文献信息, 请确认

    Google Scholar

    [68] Ding W W, Li J B, Li J, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 221-238.

    Google Scholar

    [69] Gong C L, Wang Y M, Zhu W L, et al. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes [J]. Marine and Petroleum Geology, 2011, 28(9): 1690-1702. doi: 10.1016/j.marpetgeo.2011.06.005

    CrossRef Google Scholar

    [70] Li C, Lv C F, Chen G J, et al. Source and sink characteristics of the continental slope-parallel Central Canyon in the Qiongdongnan Basin on the northern margin of the South China Sea [J]. Journal of Asian Earth Sciences, 2017, 134: 1-12. doi: 10.1016/j.jseaes.2016.10.014

    CrossRef Google Scholar

    [71] Su M, Hsiung K H, Zhang C M, et al. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink [J]. Journal of Asian Earth Sciences, 2015, 111: 1-13. doi: 10.1016/j.jseaes.2015.05.011

    CrossRef Google Scholar

    [72] Su M, Lin Z X, Wang C, et al. Geomorphologic and infilling characteristics of the slope-confined submarine canyons in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2020, 424: 106166. doi: 10.1016/j.margeo.2020.106166

    CrossRef Google Scholar

    [73] Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea [J]. Geological Society of America Bulletin, 2015, 127(5-6): 804-824. doi: 10.1130/B31003.1

    CrossRef Google Scholar

    [74] 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5):922-930

    Google Scholar

    WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea [J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930.

    Google Scholar

    [75] 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 中国地质大学(武汉)博士学位论文, 2012: 131

    Google Scholar

    HE Yunlong. The characteristics and mechanism of sediment gravity flow in slope Area in Qiongdongnan Basin[D]. Doctor Dissertation of China University of Geosciences, 2012: 131.

    Google Scholar

    [76] 秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 中国科学院海洋研究所博士学位论文, 2012: 121

    Google Scholar

    QIN Zhiliang. Sedimentary process, distribution and mechanism of mass transport deposits, the slope area of Northern South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2012: 121.

    Google Scholar

    [77] Li W, Alves T M, Wu S G, et al. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]. Earth and Planetary Science Letters, 2016, 451: 272-284. doi: 10.1016/j.jpgl.2016.07.007

    CrossRef Google Scholar

    [78] Sun Q L, Alves T M, Lu X Y, et al. True volumes of slope failure estimated from a Quaternary mass-transport deposit in the northern South China Sea [J]. Geophysical Research Letters, 2018, 45(6): 2642-2651. doi: 10.1002/2017GL076484

    CrossRef Google Scholar

    [79] 庞雄, 申俊, 袁立忠, 等. 南海珠江深水扇系统及其油气勘探前景[J]. 石油学报, 2006, 27(3):11-15,21

    Google Scholar

    PANG Xiong, SHEN Jun, YUAN Lizhong, et al. Petroleum prospect in deep-water fan system of the Pearl River in the South China Sea [J]. Acta Petrolei Sinica, 2006, 27(3): 11-15,21.

    Google Scholar

    [80] 庞雄, 彭大钧, 陈长民, 等. 三级“源-渠-汇”耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6):857-864

    Google Scholar

    PANG Xiong, PENG Dajun, CHEN Changmin, et al. Three hierarchies "Source-Conduit-Sink" coupling analysis of the Pearl River deep-water fan system [J]. Acta Geologica Sinica, 2007, 81(6): 857-864.

    Google Scholar

    [81] Zhu M Z, Graham S, Pang X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea [J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. doi: 10.1016/j.marpetgeo.2009.05.005

    CrossRef Google Scholar

    [82] Wang X X, Zhuo H T, Wang Y M, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016

    CrossRef Google Scholar

    [83] Chen H, Xie X N, Van Rooij D, et al. Depositional characteristics and spatial distribution of deep-water sedimentary systems on the northwestern middle-lower slope of the Northwest Sub-Basin, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 239-257.

    Google Scholar

    [84] Li H, Wang Y M, Zhu W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea [J]. Marine and Petroleum Geology, 2013, 43: 370-380. doi: 10.1016/j.marpetgeo.2012.12.010

    CrossRef Google Scholar

    [85] Chen H, Zhang W Y, Xie X N, et al. Linking oceanographic processes to contourite features: Numerical modelling of currents influencing a contourite depositional system on the northern South China Sea margin [J]. Marine Geology, 2022, 444: 106714. doi: 10.1016/j.margeo.2021.106714

    CrossRef Google Scholar

    [86] Wang X X, Kneller B, Wang Y M, et al. Along-strike Quaternary morphological variation of the Baiyun Sag, South China Sea: the interplay between deltas, pre-existing morphology, and oceanographic processes [J]. Marine and Petroleum Geology, 2020, 122: 104640. doi: 10.1016/j.marpetgeo.2020.104640

    CrossRef Google Scholar

    [87] McCave I N, Hall I R. Size sorting in marine muds: processes, pitfalls, and prospects for paleoflow-speed proxies [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): Q10N05.

    Google Scholar

    [88] Zhong Y, Chen Z, Li L, et al. Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: evidence from grain size of the terrigenous sediments [J]. Continental Shelf Research, 2017, 140: 11-26. doi: 10.1016/j.csr.2017.01.023

    CrossRef Google Scholar

    [89] Adams G R, Jager A J, Roering C. Investigations of rock fractures around deep level gold mine stopes[C]//Proceedings of the 22nd US Symposium on Rock Mechanics. Cambridge: American Rock Mechanics Association, 1981: 213-218.

    Google Scholar

    [90] Yin S R, Hernández-Molina F J, Lin L, et al. Plate convergence controls long-term full-depth circulation of the South China Sea [J]. Marine Geology, 2023, 459: 107050. doi: 10.1016/j.margeo.2023.107050

    CrossRef Google Scholar

    [91] Hernández-Molina F, Llave E, Stow D A V. Continental slope contourites[M]//Rebesco M, Camerlenghi A. Contourites: Developments in Sedimentology. Amsterdam: Elsevier, 2008, 60: 379-408.

    Google Scholar

    [92] Viana A R, Almeida Jr W, Machado L C. Different styles of canyon infill related to gravity and bottom current processes: Examples from the upper slope of the Se Brazilian margin[C]//Proceedings of the 6th International Congress of the Brazilian Geophysical Society. Rio de Janeiro, Brazil: European Association of Geoscientists & Engineers, 1999.

    Google Scholar

    [93] He Y L, Xie X N, Kneller B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea [J]. Marine and Petroleum Geology, 2013, 41: 264-276. doi: 10.1016/j.marpetgeo.2012.03.002

    CrossRef Google Scholar

    [94] Chen Y H, Yao G S, Wang X F, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique [J]. Sedimentary Geology, 2020, 404: 105680. doi: 10.1016/j.sedgeo.2020.105680

    CrossRef Google Scholar

    [95] de Castro S, Hernández-Molina F J, de Weger W, et al. Contourite characterization and its discrimination from other deep-water deposits in the Gulf of Cadiz contourite depositional system [J]. Sedimentology, 2021, 68(3): 987-1027. doi: 10.1111/sed.12813

    CrossRef Google Scholar

    [96] Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique [J]. Marine and Petroleum Geology, 2020, 111: 179-201. doi: 10.1016/j.marpetgeo.2019.07.047

    CrossRef Google Scholar

    [97] Fuhrmann A, Kane I A, Clare M A, et al. Hybrid turbidite-drift channel complexes: An integrated multiscale model [J]. Geology, 2020, 48(6): 562-568. doi: 10.1130/G47179.1

    CrossRef Google Scholar

    [98] Puzrin A M, Gray T E, Hill A J. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides [J]. Proceedings of The Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 471(2175): 20140772. doi: 10.1098/rspa.2014.0772

    CrossRef Google Scholar

    [99] Laberg J S, Vorren T O. The Trænadjupet Slide, offshore Norway-morphology, evacuation and triggering mechanisms [J]. Marine Geology, 2000, 171(1-4): 95-114. doi: 10.1016/S0025-3227(00)00112-2

    CrossRef Google Scholar

    [100] Lastras G, Canals M, Amblas D, et al. Eivissa slides, western Mediterranean Sea: morphology and processes [J]. Geo-Marine Letters, 2006, 26(4): 225-233. doi: 10.1007/s00367-006-0032-4

    CrossRef Google Scholar

    [101] Santek D A, Winguth A. A satellite view of internal waves induced by the Indian Ocean tsunami [J]. International Journal of Remote Sensing, 2007, 28(13-14): 2927-2936. doi: 10.1080/01431160601094534

    CrossRef Google Scholar

    [102] Pomar L, Morsilli M, Hallock P, et al. Internal waves, an under-explored source of turbulence events in the sedimentary record [J]. Earth-Science Reviews, 2012, 111(1-2): 56-81. doi: 10.1016/j.earscirev.2011.12.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2036) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint