2023 Vol. 43, No. 3
Article Contents

DOU Yanguang, SUN Chenghui, ZOU Jianjun, CONG Jingyi, ZHANG Yong, WU Yonghua, SHI Xuefa. Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 74-83. doi: 10.16562/j.cnki.0256-1492.2023051602
Citation: DOU Yanguang, SUN Chenghui, ZOU Jianjun, CONG Jingyi, ZHANG Yong, WU Yonghua, SHI Xuefa. Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 74-83. doi: 10.16562/j.cnki.0256-1492.2023051602

Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation

More Information
  • The sedimentary oxygenation and evolution of deepwater ventilation, as well as carbon burial and release in the Okinawa Trough have been highly concerned since the last glacial period over the past two decades. Although many researches have been carried out on this research regime, the coupling relationships between redox conditions and deepwater circulations, biological productivity evolutions are still controversial because of the complexity and limitations of multiple alternative proxies. This paper systematically summarizes the research progress on the oxidation and ventilation evolution of deepwater deposition in the Okinawa Trough since the last glacial period. It was found that the high paleoproductivity and organic matter flux were the main reasons for deep water hypoxia in the Okinawa Trough during the LGM to last deglaciation period. The increase in oxygen content and strengthened deepwater ventilation during the HS1 and YD periods may be related to the intrusion of stronger North Pacific Intermediate Water (NPIW). Since the early Holocene, the deepwater ventilation caused by the Kuroshio has offset the impact of the productivity increase driven by the upwelling, making the deepwater oxidized in the Okinawa Trough. We propose that future research on the paleoceanography of the Okinawa Trough should strengthen the identification and evolution tracing of deep water sources on the orbital millennium time scale, the coupling relationship between paleoproductivity and sedimentary redox under different climate states, and the environmental and climatic effects of deep water evolution.

  • 加载中
  • [1] Hoogakker B A A, Elderfield H, Schmiedl G, et al. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin [J]. Nature Geoscience, 2015, 8(1): 40-43. doi: 10.1038/ngeo2317

    CrossRef Google Scholar

    [2] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation [J]. Nature Geoscience, 2012, 5(2): 151-156. doi: 10.1038/ngeo1352

    CrossRef Google Scholar

    [3] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    CrossRef Google Scholar

    [4] Jaccard S L, Galbraith E D, Martínez-García A, et al. Covariation of deep southern Ocean oxygenation and atmospheric CO2 through the last ice age [J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514

    CrossRef Google Scholar

    [5] Du J H, Haley B A, Mix A C, et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations [J]. Nature Geoscience, 2018, 11(10): 749-755. doi: 10.1038/s41561-018-0205-6

    CrossRef Google Scholar

    [6] Detlef H, Sosdian S M, Belt S T, et al. Late Quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea – Implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism [J]. Quaternary Science Reviews, 2020, 248: 106549. doi: 10.1016/j.quascirev.2020.106549

    CrossRef Google Scholar

    [7] Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals [J]. Paleoceanography, 2004, 19(1): PA1010.

    Google Scholar

    [8] Zhao D B, Wan S M, Lu Z Y, et al. Delayed collapse of the North Pacific intermediate water after the glacial termination [J]. Geophysical Research Letters, 2021, 48(13): e2021GL092911.

    Google Scholar

    [9] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504

    CrossRef Google Scholar

    [10] Wang L, Li T M, Zhou T J. Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during boreal summer [J]. Journal of Climate, 2012, 25(5): 1619-1634. doi: 10.1175/JCLI-D-11-00109.1

    CrossRef Google Scholar

    [11] 翦知湣, 陈荣华, 李保华. 冲绳海槽南部20ka来深水底栖有孔虫的古海洋学记录[J]. 中国科学(D辑), 1996, 39(5):551-560 doi: 10.3321/j.issn:1006-9267.1996.05.008

    CrossRef Google Scholar

    JIAN Zhimin, CHEN Ronghua, LI Baohua. Deep-sea benthic foraminiferal record of the paleoceanography in the southern Okinawa Trough over the last 20 000 years [J]. Science China Earth Sciences, 1996, 39(5): 551-560. doi: 10.3321/j.issn:1006-9267.1996.05.008

    CrossRef Google Scholar

    [12] 李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部18ka以来的底栖有孔虫与底层水演化[J]. 中国科学 D辑 地球科学, 2005, 48(6):805-814 doi: 10.1360/03yd0222

    CrossRef Google Scholar

    LI Tiegang, XIANG Rong, SUN Rongtao, et al. Benthic foraminifera and bottom water evolution in the Middle-southern Okinawa Trough during the last 18 ka [J]. Science in China Series D:Earth Sciences, 2005, 48(6): 805-814. doi: 10.1360/03yd0222

    CrossRef Google Scholar

    [13] Kao S J, Dai M H, Wei K Y, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation [J]. Paleoceanography, 2008, 23(2): PA2207.

    Google Scholar

    [14] Li D W, Chang Y P, Li Q, et al. Effect of sea-level on organic carbon preservation in the Okinawa Trough over the last 91 kyr [J]. Marine Geology, 2018, 399: 148-157. doi: 10.1016/j.margeo.2018.02.013

    CrossRef Google Scholar

    [15] Zou J J, Shi X F, Zhu A M, et al. Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate [J]. Climate of the Past, 2020, 16(1): 387-407. doi: 10.5194/cp-16-387-2020

    CrossRef Google Scholar

    [16] Kao S J, Horng C S, Hsu S C, et al. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene [J]. Geophysical Research Letters, 2005, 32(15): L15609. doi: 10.1029/2005GL023139

    CrossRef Google Scholar

    [17] Dou Y G, Yang S Y, Li C, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum [J]. Progress in Oceanography, 2015, 135: 77-90. doi: 10.1016/j.pocean.2015.04.007

    CrossRef Google Scholar

    [18] Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: sedimentary mercury variations over the last 20 kyr [J]. Paleoceanography, 2017, 32(6): 571-579. doi: 10.1002/2017PA003116

    CrossRef Google Scholar

    [19] Lee K E, Lee H J, Park J H, et al. Stability of the Kuroshio path with respect to glacial sea level lowering [J]. Geophysical Research Letters, 2013, 40(2): 392-396. doi: 10.1002/grl.50102

    CrossRef Google Scholar

    [20] Chen C T A. The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf [J]. Oceanologica Acta, 1996, 19(5): 523-527.

    Google Scholar

    [21] Andres M, Wimbush M, Park J H, et al. Observations of Kuroshio flow variations in the East China Sea [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C05013.

    Google Scholar

    [22] Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio East of Taiwan, 1982-2005: anumerical study [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C04002.

    Google Scholar

    [23] Qiu B. Kuroshio and Oyashio currents[M]//Steele J H. Encyclopedia of Ocean Sciences. London: Academic Press, 2001: 1413-1425.

    Google Scholar

    [24] Qu T D, Lukas R. The bifurcation of the North equatorial current in the Pacific [J]. American Meteorological Society, 2003, 33(1): 5-18.

    Google Scholar

    [25] Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. Journal of Climate, 2004, 17(18): 3644-3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2

    CrossRef Google Scholar

    [26] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    CrossRef Google Scholar

    [27] Nakamura H, Nishina A, Liu Z J, et al. Intermediate and deep water Formation in the Okinawa Trough [J]. Journal of Geophysical Research:Oceans, 2013, 118(12): 6881-6893. doi: 10.1002/2013JC009326

    CrossRef Google Scholar

    [28] You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and gulf of Alaska in forming the North Pacific intermediate water [J]. Journal of Geophysical Research:Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304

    CrossRef Google Scholar

    [29] Talley L D. Distribution and Formation of North Pacific intermediate water [J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2

    CrossRef Google Scholar

    [30] Li L, Qu T D. Thermohaline circulation in the deep South China Sea Basin inferred from oxygen distributions [J]. Journal of Geophysical Research:Oceans, 2006, 111(C5): C05017.

    Google Scholar

    [31] Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial Period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568

    CrossRef Google Scholar

    [32] Nishina A, Nakamura H, Park J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow [J]. Journal of Geophysical Research:Oceans, 2016, 121(8): 6092-6102. doi: 10.1002/2016JC011822

    CrossRef Google Scholar

    [33] Fontanier C, Jorissen F J, Licari L, et al. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(4): 751-785. doi: 10.1016/S0967-0637(01)00078-4

    CrossRef Google Scholar

    [34] Jorissen F J, Fontanier C, Thomas E. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics [J]. Developments in Marine Geology, 2007, 1: 263-325.

    Google Scholar

    [35] Zhou Y, Chen F, Wu C, et al. Palaeoproductivity linked to monsoon variability in the northern slope of the South China Sea from the last 290 kyr: evidence of benthic foraminifera from Core SH7B [J]. Geological Society, London, Special Publications, 2016, 429(1): 197-210. doi: 10.1144/SP429.10

    CrossRef Google Scholar

    [36] Das M, Singh R K, Gupta A K, et al. Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 125-135. doi: 10.1016/j.palaeo.2016.10.035

    CrossRef Google Scholar

    [37] Burkett A M, Rathburn A E, Elena Pérez M, et al. Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 117: 39-50. doi: 10.1016/j.dsr.2016.08.011

    CrossRef Google Scholar

    [38] Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera [J]. Scientific Reports, 2018, 8(1): 9456. doi: 10.1038/s41598-018-27793-4

    CrossRef Google Scholar

    [39] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean [J]. Geology, 1994, 22(8): 719-722. doi: 10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2

    CrossRef Google Scholar

    [40] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [41] Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin [J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518. doi: 10.1016/S0016-7037(97)00237-8

    CrossRef Google Scholar

    [42] Piper D Z, Isaacs C M. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions [J]. Geological Society of America Bulletin, 1995, 107(1): 54-67. doi: 10.1130/0016-7606(1995)107<0054:MEIQSF>2.3.CO;2

    CrossRef Google Scholar

    [43] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    CrossRef Google Scholar

    [44] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    CrossRef Google Scholar

    [45] Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0

    CrossRef Google Scholar

    [46] Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales [J]. Chemical Geology, 2004, 213(4): 385-401. doi: 10.1016/j.chemgeo.2004.08.011

    CrossRef Google Scholar

    [47] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011

    CrossRef Google Scholar

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    CrossRef Google Scholar

    [48] Cruse A M, Lyons T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales [J]. Chemical Geology, 2004, 206(3-4): 319-345. doi: 10.1016/j.chemgeo.2003.12.010

    CrossRef Google Scholar

    [49] Koeppenkastrop D, De Carlo E H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach [J]. Chemical Geology, 1992, 95(3-4): 251-263. doi: 10.1016/0009-2541(92)90015-W

    CrossRef Google Scholar

    [50] Koeppenkastrop D, De Carlo E H. Uptake of rare earth elements from solution by metal oxides [J]. Environmental Science & Technology, 1993, 27(9): 1796-1802.

    Google Scholar

    [51] Ohta A, Kawabe I. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    CrossRef Google Scholar

    [52] Lyons T W, Severmann S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722. doi: 10.1016/j.gca.2006.08.021

    CrossRef Google Scholar

    [53] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X

    CrossRef Google Scholar

    [54] Morse J W, Emeis K C. Carbon/sulphur/iron relationships in upwelling sediments [J]. Geological Society, London, Special Publications, 1992, 64(1): 247-255. doi: 10.1144/GSL.SP.1992.064.01.16

    CrossRef Google Scholar

    [55] Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean [J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9

    CrossRef Google Scholar

    [56] Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years [J]. Marine Geology, 1999, 156(1-4): 285-304. doi: 10.1016/S0025-3227(98)00183-2

    CrossRef Google Scholar

    [57] Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7

    CrossRef Google Scholar

    [58] Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

    CrossRef Google Scholar

    [59] Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8

    CrossRef Google Scholar

    [60] Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the Middle Okinawa Trough since the last deglaciation: evidence from the sedimentation rate and planktonic foraminiferal record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016

    CrossRef Google Scholar

    [61] Wang L B, Li J, Zhao J T, et al. Solar-, monsoon- and Kuroshio-influenced thermocline depth and sea surface salinity in the southern Okinawa Trough during the past 17, 300 years [J]. Geo-Marine Letters, 2016, 36(4): 281-291. doi: 10.1007/s00367-016-0448-4

    CrossRef Google Scholar

    [62] Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2016, 452: 247-257. doi: 10.1016/j.jpgl.2016.07.028

    CrossRef Google Scholar

    [63] Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017

    CrossRef Google Scholar

    [64] Chen H F, Chang Y P, Kao S J, et al. Mineralogical and geochemical investigations of sediment-source region changes in the Okinawa Trough during the past 100 ka (IMAGES core MD012404) [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1238-1249. doi: 10.1016/j.jseaes.2010.09.015

    CrossRef Google Scholar

    [65] Wang J Z, Li A C, Xu K H, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the Middle Okinawa Trough since 17 ka [J]. Marine Geology, 2015, 366: 49-61. doi: 10.1016/j.margeo.2015.04.007

    CrossRef Google Scholar

    [66] Zheng X F, Li A C, Wan S M, et al. Formation of the modern current system in the East China Sea since the early Holocene and its relationship with sea level and the monsoon system [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(4): 1062-1071. doi: 10.1007/s00343-015-4089-7

    CrossRef Google Scholar

    [67] Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean [J]. Paleoceanography, 1998, 13(4): 323-339. doi: 10.1029/98PA00874

    CrossRef Google Scholar

    [68] Kubota Y, Kimoto K, Itaki T, et al. Variations in intermediate and deep ocean circulation in the subtropical northwestern Pacific from 26 ka to present based on a new calibration for Mg/Ca in benthic foraminifera [J]. Climate of the Past, 2014, 10(2): 1265-1303.

    Google Scholar

    [69] Dou Y G, Yang S Y, Liu Z X, et al. Sr–Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003

    CrossRef Google Scholar

    [70] Liu J, Zhu R X, Li T G, et al. Sediment−magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough [J]. Marine Geology, 2007, 239(1-2): 19-31. doi: 10.1016/j.margeo.2006.12.011

    CrossRef Google Scholar

    [71] Ujiié Y, Asahi H, Sagawa T, et al. Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters [J]. Paleoceanography, 2016, 31(11): 1498-1513. doi: 10.1002/2015PA002914

    CrossRef Google Scholar

    [72] Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: Okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.

    Google Scholar

    [73] Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea [J]. Paleoceanography, 2010, 25(4): PA4205.

    Google Scholar

    [74] Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.

    Google Scholar

    [75] Yu H, Liu Z X, Berné S, et al. Variations in temperature and salinity of the surface water above the Middle Okinawa Trough during the past 37kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2): 154-164. doi: 10.1016/j.palaeo.2009.08.002

    CrossRef Google Scholar

    [76] Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in Subarctic North Pacific stratification [J]. Science, 2005, 308(5724): 1003-1006. doi: 10.1126/science.1108696

    CrossRef Google Scholar

    [77] Jaccard S L, Galbraith E D, Sigman D M, et al. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs [J]. Quaternary Science Reviews, 2010, 29(1-2): 206-212. doi: 10.1016/j.quascirev.2009.10.007

    CrossRef Google Scholar

    [78] Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean [J]. Quaternary Science Reviews, 2011, 30(23-24): 3350-3363. doi: 10.1016/j.quascirev.2011.08.007

    CrossRef Google Scholar

    [79] Keigwin L D, Jones G A, Froelich P N. A 15, 000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific [J]. Earth and Planetary Science Letters, 1992, 111(2-4): 425-440. doi: 10.1016/0012-821X(92)90194-Z

    CrossRef Google Scholar

    [80] Burgay F, Spolaor A, Gabrieli J, et al. Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean [J]. Climate of the Past, 2021, 17(1): 491-505. doi: 10.5194/cp-17-491-2021

    CrossRef Google Scholar

    [81] Knudson K P, Ravelo A C, Aiello I W, et al. Causes and timing of recurring subarctic Pacific hypoxia [J]. Science Advances, 2021, 7(23): eabg2906. doi: 10.1126/sciadv.abg2906

    CrossRef Google Scholar

    [82] Lee T N, Johns W E, Liu C T, et al. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current [J]. Journal of Geophysical Research:Oceans, 2001, 106(C10): 22143-22158. doi: 10.1029/2000JC000535

    CrossRef Google Scholar

    [83] Matsuzaki K M, Itaki T, Kimoto K. Vertical distribution of polycystine radiolarians in the northern East China Sea [J]. Marine Micropaleontology, 2016, 125: 66-84. doi: 10.1016/j.marmicro.2016.03.004

    CrossRef Google Scholar

    [84] Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1

    CrossRef Google Scholar

    [85] Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the Middle Okinawa Trough during Late Quaternary paleoenvironmental change [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005

    CrossRef Google Scholar

    [86] Wahyudi, Minagawa M. Response of benthic foraminifera to organic carbon accumulation rates in the Okinawa trough [J]. Journal of Oceanography, 1997, 53(5): 411-420.

    Google Scholar

    [87] 吴永华, 程振波, 石学法. 冲绳海槽北部CSH1岩芯地层与碳酸盐沉积特征[J]. 海洋科学进展, 2004, 22(2):163-169 doi: 10.3969/j.issn.1671-6647.2004.02.006

    CrossRef Google Scholar

    WU Yonghua, CHENG Zhenbo, SHI Xuefa. Stratigraphic and carbonate sediment characteristics of core CSH1 from the northern Okinawa Trough [J]. Advances in Marine Science, 2004, 22(2): 163-169. doi: 10.3969/j.issn.1671-6647.2004.02.006

    CrossRef Google Scholar

    [88] Hu B Q, Zhang H D, Ouyang S Q, et al. Evolution of ocean productivity in the sub-tropical West Pacific Ocean across the last deglaciation [J]. Paleoceanography and Paleoclimatology, 2021, 36(8): e2021PA004250.

    Google Scholar

    [89] Zou J J, Chang Y P, Zhu A M, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current [J]. Quaternary Science Reviews, 2021, 265: 107051. doi: 10.1016/j.quascirev.2021.107051

    CrossRef Google Scholar

    [90] Chang Y P, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough) [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4): 389-401. doi: 10.3319/TAO.2008.19.4.389(IMAGES)

    CrossRef Google Scholar

    [91] 王玥铭, 窦衍光, 徐景平, 等. 16 ka以来冲绳海槽中南部有机质来源及其对上升流演变的指示[J]. 第四纪研究, 2018, 38(3):769-781 doi: 10.11928/j.issn.1001-7410.2018.03.21

    CrossRef Google Scholar

    WANG Yueming, DOU Yanguang, XU Jingping, et al. Organic matter source in the Middle southern Okinawa Trough and its indication to upwelling evolution since 16 ka [J]. Quaternary Sciences, 2018, 38(3): 769-781. doi: 10.11928/j.issn.1001-7410.2018.03.21

    CrossRef Google Scholar

    [92] Zhao J T, Li J, Cai F, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: modulation of high latitude teleconnections and the Kuroshio Current [J]. Progress in Oceanography, 2015, 138: 238-248. doi: 10.1016/j.pocean.2015.06.008

    CrossRef Google Scholar

    [93] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975

    CrossRef Google Scholar

    [94] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    CrossRef Google Scholar

    [95] Qu T D, Lindstrom E J. Northward intrusion of Antarctic intermediate water in the western Pacific [J]. Journal of Physical Oceanography, 2004, 34(9): 2104-2118. doi: 10.1175/1520-0485(2004)034<2104:NIOAIW>2.0.CO;2

    CrossRef Google Scholar

    [96] Horikawa K, Asahara Y, Yamamoto K, et al. Intermediate water Formation in the Bering Sea during glacial periods: evidence from neodymium isotope ratios [J]. Geology, 2010, 38(5): 435-438. doi: 10.1130/G30225.1

    CrossRef Google Scholar

    [97] Kender S, Ravelo A C, Worne S, et al. Closure of the Bering Strait caused Mid-Pleistocene Transition cooling [J]. Nature Communications, 2018, 9(1): 5386. doi: 10.1038/s41467-018-07828-0

    CrossRef Google Scholar

    [98] Knudson K P, Ravelo A C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait [J]. Paleoceanography, 2015, 30(10): 1287-1304. doi: 10.1002/2015PA002840

    CrossRef Google Scholar

    [99] Sagawa T, Ikehara K. Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation [J]. Geophysical Research Letters, 2008, 35(24): L24702. doi: 10.1029/2008GL035133

    CrossRef Google Scholar

    [100] Max L, Lembke-Jene L, Riethdorf J R, et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation [J]. Climate of the Past, 2014, 10(2): 591-605. doi: 10.5194/cp-10-591-2014

    CrossRef Google Scholar

    [101] Okazaki Y, Timmermann A, Menviel L, et al. Deepwater Formation in the North Pacific during the last glacial termination [J]. Science, 2010, 329(5988): 200-204. doi: 10.1126/science.1190612

    CrossRef Google Scholar

    [102] Chikamoto M O, Menviel L, Abe-Ouchi A, et al. Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 61-64: 114-126. doi: 10.1016/j.dsr2.2011.12.002

    CrossRef Google Scholar

    [103] Gong X, Lembke-Jene L, Lohmann G, et al. Enhanced North Pacific deep-ocean stratification by stronger intermediate water Formation during Heinrich Stadial 1 [J]. Nature Communications, 2019, 10(1): 656. doi: 10.1038/s41467-019-08606-2

    CrossRef Google Scholar

    [104] Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x

    CrossRef Google Scholar

    [105] Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean [J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6

    CrossRef Google Scholar

    [106] Max L, Rippert N, Lembke-Jene L, et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions [J]. Paleoceanography, 2017, 32(1): 41-55. doi: 10.1002/2016PA002994

    CrossRef Google Scholar

    [107] Rippert N, Max L, Mackensen A, et al. Alternating influence of northern versus southern-sourced water masses on the Equatorial Pacific subthermocline during the past 240 ka [J]. Paleoceanography, 2017, 32(11): 1256-1274. doi: 10.1002/2017PA003133

    CrossRef Google Scholar

    [108] Worne S, Kender S, Swann G E A, et al. Coupled climate and subarctic Pacific nutrient upwelling over the last 850, 000 years [J]. Earth and Planetary Science Letters, 2019, 522: 87-97. doi: 10.1016/j.jpgl.2019.06.028

    CrossRef Google Scholar

    [109] Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough [J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822

    CrossRef Google Scholar

    [110] Shi X, Wu Y, Zou J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (~88 ka) [J]. Climate of the Past, 2014, 10(5): 1735-1750. doi: 10.5194/cp-10-1735-2014

    CrossRef Google Scholar

    [111] Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: implications for North Pacific nutrient supply and productivity [J]. Quaternary Science Reviews, 2017, 160: 116-137. doi: 10.1016/j.quascirev.2017.01.016

    CrossRef Google Scholar

    [112] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during Late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2316) PDF downloads(371) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint