2024 Vol. 44, No. 1
Article Contents

CAI Wenqin, HUANG Enqing, LIU Shuangquan, TIAN Jun. Massive deposition of oceanic diatom mat and its impact on the carbon-nitrogen cycle over glacial-interglacial periods[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 96-108. doi: 10.16562/j.cnki.0256-1492.2023041801
Citation: CAI Wenqin, HUANG Enqing, LIU Shuangquan, TIAN Jun. Massive deposition of oceanic diatom mat and its impact on the carbon-nitrogen cycle over glacial-interglacial periods[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 96-108. doi: 10.16562/j.cnki.0256-1492.2023041801

Massive deposition of oceanic diatom mat and its impact on the carbon-nitrogen cycle over glacial-interglacial periods

More Information
  • The course of diatom blooming and deposition links the oceanic primary productivity, carbon export, burial of organic carbon, and even the production and storage of dissolved inorganic carbon in the deep ocean. At present, study on the blooming and deposition of mat-forming diatoms is becoming a hotspot of research, and shall have a significant impact on the marine carbon-nitrogen cycle. By reviewing available published studies , we summarized the specific function of mat-forming diatoms at cellular level, the mechanism of their blooming, and the spatiotemporal characteristics of diatom mat deposits, discussed the potential outcomes of diatom mat deposition under the global carbon-nitrogen cycle on the orbital time scale. Mat-forming diatoms are able to grow under low-light conditions, store nutrients, regulate buoyancy via large vacuoles, be symbiotic with nitrogen-fixing cyanobacteria, and features unique urea cycle, etc. These characteristics allow mat-forming diatoms to gain a competitive advantage and bloom in oligotrophic, stratified waters or across the oceanic frontal convergence zone. Based on downcore records, the massive blooming of Ethmodiscus rex occurred in the tropical-subtropical Atlantic as well as in the tropical western Pacific-eastern Indian Ocean during the Quaternary glacial periods, which transported a large amount of organic matter into the ocean interior. The vast majority of the sinking organic carbon was degraded in the water column, and a tiny fraction entered into marine sediments. We infer that the E. rex blooming contributed to an increase in the “respired carbon pool” in the deep oceans and a decrease in the atmospheric CO2 level in the past glacial periods. Moreover, the E. rex blooming also increased nutrient turnover in the upper ocean, which might have facilitated the expansion of glacial oceanic nitrogen reservoir. In addition, the widespread E. rex blooming during the marine isotope stages 14/12 and 4/2 has been found to be associated with the marine inorganic carbon isotope maxima events, suggesting their causal relationship. Therefore, mat-forming diatoms are an important component of the coupling oceanic carbon and nitrogen cycle. Further studies are required to constrain the extent of mat-forming diatom blooming in the geological past and its role in marine element cycling, which can help to solve the puzzle of the global carbon-nitrogen cycle over glacial-interglacial periods.

  • 加载中
  • [1] 贾恩豪, 宋海军, 雷勇, 等. 古生代-中生代之交海洋生物泵演变与浮游革命[J]. 科学通报, 2022, 67(15):1660-1676 doi: 10.1360/TB-2021-1220

    CrossRef Google Scholar

    JIA Enhao, SONG Haijun, LEI Yong, et al. Paleozoic-Mesozoic turnover of marine biological pump and Mesozoic plankton revolution [J]. Chinese Science Bulletin, 2022, 67(15): 1660-1676. doi: 10.1360/TB-2021-1220

    CrossRef Google Scholar

    [2] Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton [J]. Science, 2004, 305(5682): 354-360. doi: 10.1126/science.1095964

    CrossRef Google Scholar

    [3] Gross M. The mysteries of the diatoms [J]. Current Biology, 2012, 22(15): R581-R585. doi: 10.1016/j.cub.2012.07.041

    CrossRef Google Scholar

    [4] Raven J A, Hurd C L. Ecophysiology of photosynthesis in macroalgae [J]. Photosynthesis Research, 2012, 113(1): 105-125.

    Google Scholar

    [5] Allen A E, Dupont C L, Oborník M, et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms [J]. Nature, 2011, 473(7346): 203-207. doi: 10.1038/nature10074

    CrossRef Google Scholar

    [6] Dugdale R C, Wilkerson F P. Silicate regulation of new production in the equatorial Pacific upwelling [J]. Nature, 1998, 391(6664): 270-273. doi: 10.1038/34630

    CrossRef Google Scholar

    [7] Smetacek V, Klaas C, Strass V H, et al. Deep carbon export from a southern Ocean iron-fertilized diatom bloom [J]. Nature, 2012, 487(7407): 313-319. doi: 10.1038/nature11229

    CrossRef Google Scholar

    [8] Tozzi S, Schofield O, Falkowski P. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups [J]. Marine Ecology Progress Series, 2004, 274: 123-132. doi: 10.3354/meps274123

    CrossRef Google Scholar

    [9] Retallack G J. Early forest soils and their role in Devonian global change [J]. Science, 1997, 276(5312): 583-585. doi: 10.1126/science.276.5312.583

    CrossRef Google Scholar

    [10] Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles [J]. Nature, 2001, 411(6835): 287-290. doi: 10.1038/35077041

    CrossRef Google Scholar

    [11] Xiong Z F, Li T G, Algeo T, et al. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: implications for silicate cycling during the Last Glacial Maximum [J]. Paleoceanography, 2015, 30(7): 803-823. doi: 10.1002/2015PA002793

    CrossRef Google Scholar

    [12] 熊志方, 李铁刚. 海洋纹层硅藻席古海洋学与生物地球化学研究进展[J]. 海洋与湖沼, 2017, 48(6):1244-1256 doi: 10.11693/hyhz20170900225

    CrossRef Google Scholar

    XIONG Zhifang, LI Tiegang. Marine laminated diatom mats in palaeoceanography and biogeochemistry: retrospective and prospective [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1244-1256. doi: 10.11693/hyhz20170900225

    CrossRef Google Scholar

    [13] 翟滨, 李铁刚, 熊志方, 等. 末次冰期低纬度西太平洋硅藻席沉积中的硅藻记录[J]. 热带海洋学报, 2012, 31(4):75-82

    Google Scholar

    ZHAI Bin, LI Tiegang, XIONG Zhifang, et al. Diatom records inferred from the diatom mat deposits from low-latitude western Pacific in the last glacial Period [J]. Journal of Tropical Oceanography, 2012, 31(4): 75-82.

    Google Scholar

    [14] Kemp A E S, Pearce R B, Grigorov I, et al. Production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux from stratified oceans [J]. Global Biogeochemical Cycles, 2006, 20(4): GB4S04.

    Google Scholar

    [15] Kemp A E S, Villareal T A. High diatom production and export in stratified waters–A potential negative feedback to global warming [J]. Progress in Oceanography, 2013, 119: 4-23. doi: 10.1016/j.pocean.2013.06.004

    CrossRef Google Scholar

    [16] Kolbe R W. Diatoms from equatorial Indian Ocean cores [J]. Reports of the Swedish Deep-Sea Expedition, 1957, 9(1): 1-50.

    Google Scholar

    [17] Wiseman J D H, Hendey N I. The significance and diatom content of a deep-sea floor sample from the neighbourhood of the greates oceanic depth [J]. Deep Sea Research, 1953, 1(1): 47-59.

    Google Scholar

    [18] Helleren S. The diatom Chaetoceros spp. as a potential contributing factor to fish mortality events in Cockburn Sound, November 2015[J]. Dalcon Environmental Report, 2016: 1-29.

    Google Scholar

    [19] Davies A, Kemp A E S, Pike J. Late Cretaceous seasonal ocean variability from the Arctic [J]. Nature, 2009, 460(7252): 254-258. doi: 10.1038/nature08141

    CrossRef Google Scholar

    [20] Kemp A E S, Pike J, Pearce R B, et al. The “Fall dump”: a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2000, 47(9-11): 2129-2154. doi: 10.1016/S0967-0645(00)00019-9

    CrossRef Google Scholar

    [21] Pike J, Kemp A E S. Diatom mats in Gulf of California sediments: implications for the paleoenvironmental interpretation of laminated sediments and silica burial [J]. Geology, 1999, 27(4): 311-314. doi: 10.1130/0091-7613(1999)027<0311:DMIGOC>2.3.CO;2

    CrossRef Google Scholar

    [22] Pike J, Stickley C E. DIATOM RECORDS | Diatom fossil records from marine laminated sediments[M]//Elias S A, Mock C J. Encyclopedia of Quaternary Science. 2nd ed. Amsterdam: Elsevier, 2013: 554-561.

    Google Scholar

    [23] Lisitzin A P. Recent iceberg-rafted and cryophilic biogenic deposits of Antarctica[M]//Lisitzin A P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Berlin, Heidelberg: Springer, 2002: 299-314.

    Google Scholar

    [24] Chang Y P, Liao C C, Wang W L. Reconstruction of oceanographic changes based on diatom records of the core MD012380 since Marine Isotopic Stage 11 in the Banda Sea [J]. Journal of Quaternary Science, 2012, 27(9): 873-883. doi: 10.1002/jqs.2576

    CrossRef Google Scholar

    [25] Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006

    CrossRef Google Scholar

    [26] Riedel W R. The age of the sediment collected at Challenger (1875) Station 225 and the distribution of Ethmodiscus rex (Rattray) [J]. Deep Sea Research, 1953, 1(3): 170-175.

    Google Scholar

    [27] Broecker W S, Clark E, Lynch-Stieglitz J, et al. Late glacial diatom accumulation at 9°S in the Indian Ocean [J]. Paleoceanography, 2000, 15(3): 348-352. doi: 10.1029/1999PA000439

    CrossRef Google Scholar

    [28] Pokras E M. Diatom record of Late Quaternary climatic change in the eastern equatorial Atlantic and tropical Africa [J]. Paleoceanography, 1987, 2(3): 273-286. doi: 10.1029/PA002i003p00273

    CrossRef Google Scholar

    [29] Abrantes F. Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial Atlantic core [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2001, 48(1): 125-135. doi: 10.1016/S0967-0637(00)00041-8

    CrossRef Google Scholar

    [30] Romero O, Schmieder F. Occurrence of thick Ethmodiscus oozes associated with a terminal Mid-Pleistocene Transition event in the oligotrophic subtropical South Atlantic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235(4): 321-329. doi: 10.1016/j.palaeo.2005.10.026

    CrossRef Google Scholar

    [31] Gardner J V, Burckle L H. Upper Pleistocene Ethmodiscus rex oozes from the eastern equatorial Atlantic [J]. Micropaleontology, 1975, 21(2): 236-242. doi: 10.2307/1485026

    CrossRef Google Scholar

    [32] Abelmann A, Gersonde R, Spiess V. Pliocene-Pleistocene paleoceanography in the Weddell Sea—siliceous microfossil evidence[M]//Bleil U, Thiede J. Geological History of the Polar Oceans: Arctic Versus Antarctic. Dordrecht: Springer, 1990: 729-759.

    Google Scholar

    [33] Kemp A E S, Pearce R B, Koizumi I, et al. The role of mat-forming diatoms in the Formation of Mediterranean sapropels [J]. Nature, 1999, 398(6722): 57-61. doi: 10.1038/18001

    CrossRef Google Scholar

    [34] Kemp A E S, Baldauf J G. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean [J]. Nature, 1993, 362(6416): 141-144. doi: 10.1038/362141a0

    CrossRef Google Scholar

    [35] Dickens G R, Barron J A. A rapidly deposited pennate diatom ooze in Upper Miocene-Lower Pliocene sediment beneath the North Pacific polar front [J]. Marine Micropaleontology, 1997, 31(3-4): 177-182. doi: 10.1016/S0377-8398(97)00003-0

    CrossRef Google Scholar

    [36] Pike J. Data Report: backscattered electron imagery analysis of early Pliocene laminated Ethmodiscus ooze, Site 1010[C]//Proceedings of the Ocean Drilling Program Scientific Results. 2000: 207-212.

    Google Scholar

    [37] Chang A S, Patterson R T. Climate shift at 4400 years BP: evidence from high-resolution diatom stratigraphy, Effingham Inlet, British Columbia, Canada [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(1-2): 72-92. doi: 10.1016/j.palaeo.2005.05.004

    CrossRef Google Scholar

    [38] Bull D, Kemp A E S. Composition and origins of laminae in Late Quaternary and Holocene sediments from the Santa Barbara Basin [J]. Geological Society, London, Special Publications, 1996, 116(1): 143-156. doi: 10.1144/GSL.SP.1996.116.01.13

    CrossRef Google Scholar

    [39] Lange C B, Berger W H, Lin H L, et al. The early Matuyama diatom maximum off SW Africa, Benguela current system (ODP leg 175) [J]. Marine Geology, 1999, 161(2-4): 93-114. doi: 10.1016/S0025-3227(99)00081-X

    CrossRef Google Scholar

    [40] van Bennekom A J, Jansen J H F, van der Gaast S J, et al. Aluminium-rich opal: an intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(2): 173-190. doi: 10.1016/0198-0149(89)90132-5

    CrossRef Google Scholar

    [41] Shimada C, Sato T, Yamasaki M, et al. Drastic change in the Late Pliocene subarctic Pacific diatom community associated with the onset of the northern Hemisphere Glaciation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279(3-4): 207-215. doi: 10.1016/j.palaeo.2009.05.015

    CrossRef Google Scholar

    [42] Kemp A E S, Grigorov I, Pearce R B, et al. Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications [J]. Quaternary Science Reviews, 2010, 29(17-18): 1993-2009. doi: 10.1016/j.quascirev.2010.04.027

    CrossRef Google Scholar

    [43] Murdmaa I O, Kazarina G H, Beaufort L, et al. Upper Quaternary laminated sapropelic sediments from the continental slope of Baja California [J]. Lithology and Mineral Resources, 2010, 45(2): 154-171. doi: 10.1134/S0024490210020057

    CrossRef Google Scholar

    [44] Kemp A E S, Baldauf J G, Pearce R B. Origins and palaeoceangraphic significance of laminated daitom ooze from the eastern Equatorial Pacific Ocean [J]. Geological Society, London, Special Publications, 1996, 116(1): 243-252. doi: 10.1144/GSL.SP.1996.116.01.19

    CrossRef Google Scholar

    [45] Khim B K, Yoon H I, Kang C Y, et al. Unstable climate oscillations during the Late Holocene in the eastern Bransfield Basin, Antarctic Peninsula [J]. Quaternary Research, 2002, 58(3): 234-245. doi: 10.1006/qres.2002.2371

    CrossRef Google Scholar

    [46] Denis D, Crosta X, Zaragosi S, et al. Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica [J]. The Holocene, 2006, 16(8): 1137-1147. doi: 10.1177/0959683606069414

    CrossRef Google Scholar

    [47] Boden P, Backman J. A laminated sediment sequence from the northern North Atlantic Ocean and its climatic record [J]. Geology, 1996, 24(6): 507-510. doi: 10.1130/0091-7613(1996)024<0507:ALSSFT>2.3.CO;2

    CrossRef Google Scholar

    [48] Leventer A, Domack E, Dunbar R, et al. Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession [J]. GSA Today, 2006, 16(12): 4-10. doi: 10.1130/GSAT01612A.1

    CrossRef Google Scholar

    [49] Maddison E J, Pike J, Leventer A, et al. Deglacial seasonal and sub-seasonal diatom record from Palmer Deep, Antarctica [J]. Journal of Quaternary Science, 2005, 20(5): 435-446. doi: 10.1002/jqs.947

    CrossRef Google Scholar

    [50] Kanaya T, Koizumi I. Interpretation of diatom Thanatocoenoses from the North Pacific applied to a study of core V20-130 (Studies of a Deep-sea Core V20-130. Part IV) [J]. The Science Reports of the Tohoku University. Second Series, Geology, 1966, 37(2): 89-130.

    Google Scholar

    [51] Koizumi I. Neogene diatoms from the western margin of the Pacific Ocean, Leg 31, Deep Sea Drilling Project. 1975: 779-819.

    Google Scholar

    [52] Ling H Y, Anikouchine W A. Some spumellarian Radiolaria from the Java, Philippine, and Mariana trenches [J]. Journal of Paleontology, 1967, 41(6): 1481-1491.

    Google Scholar

    [53] Mikkelsen N. On the origin of Ethmodiscus ooze [J]. Marine Micropaleontology, 1977, 2: 35-46. doi: 10.1016/0377-8398(77)90004-4

    CrossRef Google Scholar

    [54] Ujiie´ H, Tanaka Y, Ono T. Late Quarternary paleoceanographic record from the Middle Ryukyu Trench slope, northwest Pacific [J]. Marine Micropaleontology, 1991, 18(1-2): 115-128. doi: 10.1016/0377-8398(91)90008-T

    CrossRef Google Scholar

    [55] Yamamoto S. Diagenetic enrichment of manganese and other heavy metals in hemipelagic brown clay of the Palau Trench floor [J]. Journal of Sedimentary Research, 1992, 62(4): 706-717.

    Google Scholar

    [56] Zhang J, Witkowski A, Tomczak M, et al. Diatomaceous ooze in a sedimentary core from Mariana Trench: implications for paleoceanography [J]. Acta Geologica Polonica, 2019, 69(4): 627-643.

    Google Scholar

    [57] Stabell B. Variations of diatom flux in the eastern equatorial Atlantic during the last 400, 000 years (“Meteor” cores 13519 and 13521) [J]. Marine Geology, 1986, 72(3-4): 305-323. doi: 10.1016/0025-3227(86)90125-8

    CrossRef Google Scholar

    [58] Huang Y H, Sun C J, Yang G P, et al. Geochemical characteristics of hadal sediment in the northern Yap Trench [J]. Journal of Oceanology and Limnology, 2020, 38(3): 650-664. doi: 10.1007/s00343-019-9010-3

    CrossRef Google Scholar

    [59] Tanimura Y. Late Quaternary marine diatom Ethmodiscus rex from the northwestern Pacific Ocean [J]. Bulletin of the National Science Museum, Series C (Geology & Paleontology), 1981, 7(3): 91-96.

    Google Scholar

    [60] Round F E. Forms of the giant diatom Ethmodiscus from the Pacific and Indian Oceans [J]. Phycologia, 1980, 19(4): 307-316. doi: 10.2216/i0031-8884-19-4-307.1

    CrossRef Google Scholar

    [61] De Deckker P, Gingele F X. On the occurrence of the giant diatom Ethmodiscus rex in an 80-ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography [J]. Marine Geology, 2002, 183(1-4): 31-43. doi: 10.1016/S0025-3227(01)00252-3

    CrossRef Google Scholar

    [62] Barron J A. Late Eocene to Holocene diatom biostratigraphy of the equatorial Pacific Ocean, Deep Sea Drilling Project Leg 85[R]. 1985: 413-456.

    Google Scholar

    [63] Johnson T C. The dissolution of siliceous microfossils in surface sediments of the eastern tropical Pacific[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(10): 851-854, IN7-IN8, 855-864.

    Google Scholar

    [64] Janin M C, Person A. Biostratigraphie comparee de nodules et sediments du Pacifique Nord-Equatorial (zone Clarion-Clipperton) [J]. Bulletin de la Société Géologique de France, 1986, 2(3): 373-380.

    Google Scholar

    [65] Hendry K R, Robinson L F, McManus J F, et al. Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation [J]. Nature Communications, 2014, 5: 3107. doi: 10.1038/ncomms4107

    CrossRef Google Scholar

    [66] Bjørklund K R, Jansen J H F. Radiolaria distribution in Middle and Late Quaternary sediments and palaeoceanography in the eastern Angola Basin [J]. Netherlands Journal of Sea Research, 1984, 17(2-4): 299-312. doi: 10.1016/0077-7579(84)90053-X

    CrossRef Google Scholar

    [67] Emelyanov E M. Sedimentation and near-bottom currents in the South-western Atlantic [J]. Geologija, 2008, 50(4): 275-289. doi: 10.2478/v10056-008-0053-y

    CrossRef Google Scholar

    [68] Ruddiman W F. Pleistocene sedimentation in the equatorial Atlantic: stratigraphy and faunal paleoclimatology [J]. GSA Bulletin, 1971, 82(2): 283-302. doi: 10.1130/0016-7606(1971)82[283:PSITEA]2.0.CO;2

    CrossRef Google Scholar

    [69] Bohrmann G, Abelmann A, Gersonde R, et al. Pure siliceous ooze, a diagenetic environment for early chert Formation [J]. Geology, 1994, 22(3): 207-210. doi: 10.1130/0091-7613(1994)022<0207:PSOADE>2.3.CO;2

    CrossRef Google Scholar

    [70] Gersonde R, Burckle L H. Neogene diatom biostratigraphy of ODP Leg 113, Weddell Sea (Antarctic Ocean)[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 1990: 761-789.

    Google Scholar

    [71] Schmidt M, Botz R, Stoffers P, et al. Oxygen isotopes in marine diatoms: a comparative study of analytical techniques and new results on the isotope composition of recent marine diatoms [J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2275-2280. doi: 10.1016/S0016-7037(97)00081-1

    CrossRef Google Scholar

    [72] Emerson S, Quay P, Karl D, et al. Experimental determination of the organic carbon flux from open-ocean surface waters [J]. Nature, 1997, 389(6654): 951-954. doi: 10.1038/40111

    CrossRef Google Scholar

    [73] Schlitzer R. Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data [J]. Journal of Oceanography, 2004, 60(1): 53-62. doi: 10.1023/B:JOCE.0000038318.38916.e6

    CrossRef Google Scholar

    [74] Goldman J C. Potential role of large oceanic diatoms in new primary production [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(1): 159-168. doi: 10.1016/0967-0637(93)90059-C

    CrossRef Google Scholar

    [75] Smetacek V. The giant diatom dump [J]. Nature, 2000, 406(6796): 574-575. doi: 10.1038/35020665

    CrossRef Google Scholar

    [76] Villareal T A, Carpenter E J. Chemical composition and photosynthetic characteristics of Ethmodiscus rex (bacillariophyceae): evidence for vertical migration [J]. Journal of Phycology, 1994, 30(1): 1-8. doi: 10.1111/j.0022-3646.1994.00001.x

    CrossRef Google Scholar

    [77] Villareal T A, Lipschultz F. Internal nitrate concentrations in single cells of large phytoplankton from the Sargasso Sea [J]. Journal of Phycology, 1995, 31(5): 689-696. doi: 10.1111/j.0022-3646.1995.00689.x

    CrossRef Google Scholar

    [78] Villareal T A, Pilskaln C, Brzezinski M, et al. Upward transport of oceanic nitrate by migrating diatom mats [J]. Nature, 1999, 397(6718): 423-425. doi: 10.1038/17103

    CrossRef Google Scholar

    [79] Kemp A E S, Villareal T A. The case of the diatoms and the muddled mandalas: time to recognize diatom adaptations to stratified waters [J]. Progress in Oceanography, 2018, 167: 138-149. doi: 10.1016/j.pocean.2018.08.002

    CrossRef Google Scholar

    [80] Villareal T A. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus [J]. Marine Ecology Progress Series, 1991, 76(2): 201-204.

    Google Scholar

    [81] Villareal T A, Altabet M A, Culver-Rymsza K. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean [J]. Nature, 1993, 363(6431): 709-712. doi: 10.1038/363709a0

    CrossRef Google Scholar

    [82] Yoder J A, Ackleson S G, Barber R T, et al. A line in the sea [J]. Nature, 1994, 371(6499): 689-692. doi: 10.1038/371689a0

    CrossRef Google Scholar

    [83] Archer D, Aiken J, Balch W, et al. A meeting place of great ocean currents: shipboard observations of a convergent front at 2°N in the Pacific [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1997, 44(9-10): 1827-1849. doi: 10.1016/S0967-0645(97)00031-3

    CrossRef Google Scholar

    [84] Honjo S, Dymond J, Collier R, et al. Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1995, 42(2-3): 831-870. doi: 10.1016/0967-0645(95)00034-N

    CrossRef Google Scholar

    [85] Huang E Q, Mulitza S, Paul A, et al. Response of eastern tropical Atlantic central waters to Atlantic meridional overturning circulation changes during the Last Glacial Maximum and Heinrich Stadial 1 [J]. Paleoceanography, 2012, 27(3): PA3229.

    Google Scholar

    [86] Rackebrandt N, Kuhnert H, Groeneveld J, et al. Persisting maximum Agulhas leakage during MIS 14 indicated by massive Ethmodiscus oozes in the subtropical South Atlantic [J]. Paleoceanography, 2011, 26(3): PA3202.

    Google Scholar

    [87] 熊志方, 李铁刚, 翟滨, 等. LGM热带西太平洋硅藻席古生产力定量评估[J]. 地球科学:中国地质大学学报, 2013, 38(1):25-32 doi: 10.3799/dqkx.2013.003

    CrossRef Google Scholar

    XIONG Zhifang, LI Tiegang, ZHAI Bin, et al. Quantitative evaluation of paleoproductivity of diatom mats from tropical West Pacific during the Last Glacial Maximum (LGM) [J]. Earth Science:Journal of China University of Geosciences, 2013, 38(1): 25-32. doi: 10.3799/dqkx.2013.003

    CrossRef Google Scholar

    [88] Seiter K, Hensen C, Schröter J, et al. Organic carbon content in surface sediments—defining regional provinces [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(12): 2001-2026. doi: 10.1016/j.dsr.2004.06.014

    CrossRef Google Scholar

    [89] Altabet M A. Isotopic tracers of the marine nitrogen cycle: present and past[M]//Volkman J K. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin, Heidelberg: Springer, 2006: 251-293.

    Google Scholar

    [90] Wang W L, Moore J K, Martiny A C, et al. Convergent estimates of marine nitrogen fixation [J]. Nature, 2019, 566(7743): 205-211. doi: 10.1038/s41586-019-0911-2

    CrossRef Google Scholar

    [91] Sigman D M, Karsh K L, Casciotti K L. Nitrogen isotopes in the ocean[M]//Steele J H. Encyclopedia of Ocean Sciences. London: Academic Press, 2009: 4139-4153.

    Google Scholar

    [92] Moore J K, Doney S C, Lindsay K, et al. Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition [J]. Tellus B:Chemical and Physical Meteorology, 2006, 58(5): 560-572. doi: 10.1111/j.1600-0889.2006.00209.x

    CrossRef Google Scholar

    [93] Pierella Karlusich J J, Pelletier E, Lombard F, et al. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods [J]. Nature Communications, 2021, 12(1): 4160. doi: 10.1038/s41467-021-24299-y

    CrossRef Google Scholar

    [94] Goldman J C, Hansell D A, Dennett M R. Chemical characterization of three large oceanic diatoms: potential impact on water column chemistry [J]. Marine Ecology Progress Series, 1992, 88(2-3): 257-270.

    Google Scholar

    [95] Foster R A, Kuypers M M M, Vagner T, et al. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses [J]. The ISME Journal, 2011, 5(9): 1484-1493. doi: 10.1038/ismej.2011.26

    CrossRef Google Scholar

    [96] Krupke A, Mohr W, LaRoche J, et al. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis [J]. The ISME Journal, 2015, 9(7): 1635-1647. doi: 10.1038/ismej.2014.253

    CrossRef Google Scholar

    [97] Carpenter E J, Montoya J P, Burns J, et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean [J]. Marine Ecology Progress Series, 1999, 185: 273-283. doi: 10.3354/meps185273

    CrossRef Google Scholar

    [98] Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments [J]. Paleoceanography, 2012, 27(4): PA4203.

    Google Scholar

    [99] Horn M G, Robinson R S, Rynearson T A, et al. Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms [J]. Paleoceanography, 2011, 26(3): PA3208.

    Google Scholar

    [100] Emeis K C, Struck U, Schulz H M, et al. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16, 000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 158(3-4): 259-280. doi: 10.1016/S0031-0182(00)00053-5

    CrossRef Google Scholar

    [101] Sachs J P, Repeta D J, Goericke R. Nitrogen and carbon isotopic ratios of chlorophyll from marine phytoplankton [J]. Geochimica et Cosmochimica Acta, 1999, 63(9): 1431-1441. doi: 10.1016/S0016-7037(99)00097-6

    CrossRef Google Scholar

    [102] Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427-556. doi: 10.1016/j.pmatsci.2005.08.003

    CrossRef Google Scholar

    [103] Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration [J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149

    CrossRef Google Scholar

    [104] Anderson R F, Sachs J P, Fleisher M Q, et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age [J]. Global Biogeochemical Cycles, 2019, 33(3): 301-317. doi: 10.1029/2018GB006049

    CrossRef Google Scholar

    [105] Jacobel A W, Anderson R F, Jaccard S L, et al. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions [J]. Quaternary Science Reviews, 2020, 230: 106065. doi: 10.1016/j.quascirev.2019.106065

    CrossRef Google Scholar

    [106] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    CrossRef Google Scholar

    [107] Broecker W S, Henderson G M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes [J]. Paleoceanography, 1998, 13(4): 352-364. doi: 10.1029/98PA00920

    CrossRef Google Scholar

    [108] Straub M, Tremblay M M, Sigman D M, et al. Nutrient conditions in the subpolar North Atlantic during the last glacial Period reconstructed from foraminifera-bound nitrogen isotopes [J]. Paleoceanography, 2013, 28(1): 79-90. doi: 10.1002/palo.20013

    CrossRef Google Scholar

    [109] Ren H A, Anderson R, Sigman D M, et al. Multiple nitrogen isotope recorders for surface ocean nitrate utilization in the Subarctic North Pacific and the Bering Sea[C]//American Geophysical Union, Fall Meeting 2017, Abstracts. AGU, 2017: PP44C-07.

    Google Scholar

    [110] Ganeshram R S, Pedersen T F, Calvert S E, et al. Large changes in oceanic nutrient inventories from glacial to interglacial periods [J]. Nature, 1995, 376(6543): 755-758. doi: 10.1038/376755a0

    CrossRef Google Scholar

    [111] Eugster O, Gruber N, Deutsch C, et al. The dynamics of the marine nitrogen cycle across the last deglaciation [J]. Paleoceanography, 2013, 28(1): 116-129. doi: 10.1002/palo.20020

    CrossRef Google Scholar

    [112] 田军, 吴怀春, 黄春菊, 等. 从40万年长偏心率周期看米兰科维奇理论[J]. 地球科学, 2022, 47(10):3543-3568

    Google Scholar

    TIAN Jun, WU Huaichun, HUANG Chunju, et al. Revisiting the Milankovitch theory from the perspective of the 405 ka long eccentricity cycle [J]. Earth Science, 2022, 47(10): 3543-3568.

    Google Scholar

    [113] Wang P X, Tian J, Cheng X R, et al. Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison [J]. Paleoceanography, 2004, 19(4): PA4005.

    Google Scholar

    [114] Wang P X, Li Q Y, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea [J]. National Science Review, 2014, 1(1): 119-143. doi: 10.1093/nsr/nwt028

    CrossRef Google Scholar

    [115] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.

    Google Scholar

    [116] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.

    Google Scholar

    [117] Cheng X R, Zhao Q H, Wang J L, et al. Data report: stable isotopes from sites 1147 and 1148[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 2004.

    Google Scholar

    [118] Gingele F X, Schmieder F. Anomalous South Atlantic lithologies confirm global scale of unusual mid-Pleistocene climate excursion [J]. Earth and Planetary Science Letters, 2001, 186(1): 93-101. doi: 10.1016/S0012-821X(01)00234-5

    CrossRef Google Scholar

    [119] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean [J]. Nature, 1993, 365(6442): 119-125. doi: 10.1038/365119a0

    CrossRef Google Scholar

    [120] Hansell D A, Carlson C A. Localized refractory dissolved organic carbon sinks in the deep ocean [J]. Global Biogeochemical Cycles, 2013, 27(3): 705-710. doi: 10.1002/gbc.20067

    CrossRef Google Scholar

    [121] Bauer J E, Williams P M, Druffel E R M. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea [J]. Nature, 1992, 357(6380): 667-670. doi: 10.1038/357667a0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1187) PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint