Citation: | LONG Feijiang, XIANG Bo, WANG Yizhuo, ZHANG Yongcong, HU Liangming, SUN Xi, LU Zhengyuan, WU Wendong, GE Qian, BIAN Yeping, HAN Xibin. Evolution of paleoproductivity in the Antarctica Ross Sea since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 109-120. doi: 10.16562/j.cnki.0256-1492.2022111601 |
To reveal the past climate changes and ecological system evolution in Antarctica and provide key information, predict the impact of future climate change, and improve the accuracy of climate models, the Ross Sea paleoproductivity was studied by testing and analyzing the organic carbon, nitrogen and their isotopes, and major and trace elements of the ANT32-RB16C core in the Antarctic Ross Sea. The evolution of paleoproductivity in the Ross Sea since 24.8 cal.kaBP (Last Glacial Maximum) was reconstructed. Results show that the ANT32-RB16C sedimentation record well reflected the change in paleoproductivity in three stages including the Last Glacial Maximum, the last deglaciation, and the Holocene, which is consistent with the change in temperature in the Antarctica. The core record shows a higher productivity during the warm period and a lower productivity during the cold period. Specifically, from 24.8 to 17.5 cal.kaBP, the ocean productivity was low, from 17.5 to 11.7 cal.kaBP, the ocean productivity changed from low to high status, and during 11.7~0 cal.kaBP, the ocean productivity gradually recovered. The paleoproductivity of the Ross Sea was influenced obviously by regional climate change, especially climate events such as the Antarctic Circumpolar Reversal, Younger Dryas, and Little Ice Age etc., which had a heavy impact on the evolution of paleoproductivity in the study area. At the same time, sea ice, nutrients, and so on play important roles in the evolution of paleoproductivity in the Ross Sea. In other words, during the cold period, sea ice coverage increased and the thickness of surface seawater layer slowed down the upwelling of deep water rich in nutrient salt. Meanwhile, there was a relative lack of nitrates in surface seawater, resulting in lower productivity at that time.
[1] | Mortlock R A, Charles C D, Froelich P N, et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation [J]. Nature, 1991, 351(6323): 220-223. doi: 10.1038/351220a0 |
[2] | Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea: A record of teleconnections with Northern Hemisphere events [J]. Marine Geology, 1999, 156(1-4): 197-210. doi: 10.1016/S0025-3227(98)00179-0 |
[3] | Hiscock M R, Marra J, Smith Jr W O, et al. Primary productivity and its regulation in the Pacific sector of the Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(3-4): 533-558. doi: 10.1016/S0967-0645(02)00583-0 |
[4] | 高众勇, 陈立奇, 王伟强. 南大洋二氧化碳源汇分布及其海-气通量研究[J]. 极地研究, 2001, 13(3):175-186 GAO Zhongyong, CHEN Liqi, WANG Weiqiang. AIR-SEA fluxes and the distribution of sink and source of CO2 between 80°W and 80°E in the Southern Ocean [J]. Chinese Journal of Polar Research, 2001, 13(3): 175-186. |
[5] | Petrou K, Kranz S A, Trimborn S, et al. Southern Ocean phytoplankton physiology in a changing climate [J]. Journal of Plant Physiology, 2016, 203: 135-150. doi: 10.1016/j.jplph.2016.05.004 |
[6] | Arrigo K R, Van Dijken G L, Bushinsky S. Primary production in the Southern Ocean, 1997-2006 [J]. Journal of Geophysical Research:Oceans, 2008, 113(C8): C08004. |
[7] | Smith Jr W O, Nelson D M, DiTullio G R, et al. Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18455-18465. doi: 10.1029/96JC01304 |
[8] | Ichikawa T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean [J]. Marine Biology, 1982, 68(1): 49-60. doi: 10.1007/BF00393140 |
[9] | Martin J H. Glacial‐interglacial CO2 change: The iron hypothesis [J]. Paleoceanography, 1990, 5(1): 1-13. doi: 10.1029/PA005i001p00001 |
[10] | Erickson III D J, Hernandez J L, Ginoux P, et al. Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region [J]. Geophysical Research Letters, 2003, 30(12): 1609. |
[11] | Kaufmann P, Fundel F, Fischer H, et al. Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean [J]. Quaternary Science Reviews, 2010, 29(1-2): 313-323. doi: 10.1016/j.quascirev.2009.11.009 |
[12] | Noble T L, Piotrowski A M, Robinson L F, et al. Greater supply of Patagonian-sourced detritus and transport by the ACC to the Atlantic sector of the Southern Ocean during the last glacial period [J]. Earth and Planetary Science Letters, 2012, 317-318: 374-385. doi: 10.1016/j.jpgl.2011.10.007 |
[13] | Manoj M C, Thamban M. Shifting frontal regimes and its influence on bioproductivity variations during the Late Quaternary in the Indian sector of Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118: 261-274. doi: 10.1016/j.dsr2.2015.03.011 |
[14] | Jaccard S L, Hayes C T, Martinez-Garcia A, et al. Two modes of change in Southern Ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545 |
[15] | Nürnberg C C. Bariumfluß und sedimentation im südlichen südatlantik: hinweise auf produktivitätsänderungen im quartär [J]. GEOMAR Report, 1995, 38: 105. |
[16] | Harris P T. Ripple cross-laminated sediments on the East Antarctic Shelf: evidence for episodic bottom water production during the Holocene? [J]. Marine Geology, 2000, 170(3-4): 317-330. doi: 10.1016/S0025-3227(00)00096-7 |
[17] | Kim S, Lee J I, McKay R M, et al. Late Pleistocene paleoceanographic changes in the Ross Sea — Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356 |
[18] | Kaiser E A, Billups K, Bradtmiller L. A 1 million year record of biogenic silica in the Indian Ocean sector of the Southern Ocean: Regional versus global forcing of primary productivity [J]. Paleoceanography and Paleoclimatology, 2021, 36(3): e2020PA004033. |
[19] | Xiu C, DU M, Zhang X, et al. Changes of marine productivity and sedimentary environment recorded by biogenic components in the Antarctica Ross Sea since the last deglaciation [J]. Journal of Oceanology and Limnology, 2020, 38(6): 1746-1754. doi: 10.1007/s00343-019-9218-2 |
[20] | 周尚哲, 赵井东, 王杰, 等. 第四纪冰冻圈: 全球变化长尺度研究[J]. 中国科学院院刊, 2020, 35(4):475-483 ZHOU Shangzhe, ZHAO Jingdong, WANG Jie, et al. Quaternary Cryosphere: study on global change in long terms [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 475-483. |
[21] | Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles [J]. Quaternary Science Reviews, 2002, 21(1-3): 203-231. doi: 10.1016/S0277-3791(01)00082-8 |
[22] | North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805 |
[23] | Mix A C, Bard E, Schneider R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG) [J]. Quaternary Science Reviews, 2001, 20(4): 627-657. doi: 10.1016/S0277-3791(00)00145-1 |
[24] | Wang P X, Sun X J. Last glacial maximum in China: comparison between land and sea [J]. CATENA, 1994, 23(3-4): 341-353. doi: 10.1016/0341-8162(94)90077-9 |
[25] | 王绍武, 闻新宇. 末次冰期冰盛期[J]. 气候变化研究进展, 2011, 7(5):381-382 WANG Shaowu, WEN Xinyu. Last glacial maximum [J]. Advances in Climate Change Research, 2011, 7(5): 381-382. |
[26] | Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130, 000 years [J]. Quaternary Research, 1988, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9 |
[27] | Morgan V, Delmotte M, Van Ommen T, et al. Relative timing of deglacial climate events in Antarctica and Greenland [J]. Science, 2002, 297(5588): 1862-1864. doi: 10.1126/science.1074257 |
[28] | Mangerud J, Andersen S T, Berglund B E, et al. Quaternary stratigraphy of Norden, a proposal for terminology and classification [J]. Boreas, 1974, 3(3): 109-126. |
[29] | Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change [J]. Science, 2003, 299(5615): 2005-2010. doi: 10.1126/science.1081056 |
[30] | Bentley M J, Hodgson D A, Smith J A, et al. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region [J]. The Holocene, 2009, 19(1): 51-69. doi: 10.1177/0959683608096603 |
[31] | 扈传昱, 潘建明, 张海生, 等. 南极普里兹湾外海沉降颗粒物通量、组成变化及其与罗斯海对比研究[J]. 海洋学报, 2006, 28(5):49-55 HU Chuanyu, PAN Jianming, ZHANG Haisheng, et al. Study of vertical particle fluxes and their composition in the deep ocean of the north open sea of the Prydz Bay, Antarctica and the comparison with the Ross Sea [J]. Acta Oceanologica Sinica, 2006, 28(5): 49-55. |
[32] | Huo S X, Xiu C, Zhang X, et al. Geochemical characteristics of biogenic barium in sediments of the Antarctica Ross Sea and their indication for paleoproductivity [J]. Indian Journal of Geo-Marine Sciences, 2020, 49(2): 241-248. |
[33] | 樊加恩, 王汝建, 丁旋, 等. 南极罗斯海JOIDES海槽末次冰期以来底栖有孔虫组合及其对冰架扩张与消融的响应[J]. 微体古生物学报, 2021, 38(1):93-111 FAN Jiaen, WANG Rujian, DING Xuan, et al. Benthic foraminifera assemblages and their response to ice shelf changes in the Joides Trough of the Ross Sea, Antarctica since the last glacial period [J]. Acta Micropalaeontologica Sinica, 2021, 38(1): 93-111. |
[34] | Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change [J]. Oceanography, 2012, 25(3): 90-103. doi: 10.5670/oceanog.2012.80 |
[35] | Mosola A B, Anderson J B. Expansion and rapid retreat of the West Antarctic Ice Sheet in eastern Ross Sea: possible consequence of over-extended ice streams? [J]. Quaternary Science Reviews, 2006, 25(17-18): 2177-2196. doi: 10.1016/j.quascirev.2005.12.013 |
[36] | Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM [J]. Quaternary Science Reviews, 2014, 100: 31-54. doi: 10.1016/j.quascirev.2013.08.020 |
[37] | Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review [J]. Quaternary Science Reviews, 2002, 21(1-3): 49-70. doi: 10.1016/S0277-3791(01)00083-X |
[38] | 刘帅斌, 周春霞, 王泽民. 罗斯海和普里兹湾海域海冰范围变化对比分析[J]. 极地研究, 2016, 28(2):228-234 LIU Shuaibin, ZHOU Chunxia, WANG Zemin. Comparative analysis of changes in sea ice extent in Ross Sea and Prydz bay [J]. Chinese Journal of Polar Research, 2016, 28(2): 228-234. |
[39] | Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea [J]. Annual Review of Marine Science, 2014, 6: 469-487. doi: 10.1146/annurev-marine-010213-135114 |
[40] | Marsay C M, Barrett P M, McGillicuddy Jr D J et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer [J]. Journal of Geophysical Research:Oceans, 2017, 122(8): 6371-6393. doi: 10.1002/2017JC013068 |
[41] | Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas [J]. Geophysical Research Letters, 2008, 35(7): L07606. |
[42] | Whitworth III T, Nowlin Jr W D. Water masses and currents of the Southern Ocean at the Greenwich Meridian [J]. Journal of Geophysical Research:Oceans, 1987, 92(C6): 6462-6476. doi: 10.1029/JC092iC06p06462 |
[43] | Peloquin J A, Smith Jr W O. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition [J]. Journal of Geophysical Research:Oceans, 2007, 112(C8): C08013. |
[44] | Cincinelli A, Martellini T, Bittoni L, et al. Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica) [J]. Journal of Marine Systems, 2008, 73(1-2): 208-220. doi: 10.1016/j.jmarsys.2007.10.010 |
[45] | 黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5):97-108 HUANG Mengxue, WANG Rujian, XIAO Wenshen, et al. Retreat process of Ross Ice Shelf and hydrodynamic changes on northwestern Ross continental shelf since the last glacial [J]. Marine geology & Quaternary Geology, 2016, 36(5): 97-108. |
[46] | 崔超, 唐正, Rebesco M, 等. 末次冰消期南大洋深部流通性增强的罗斯海沉积记录[J]. 第四纪研究, 2021, 41(3):678-690 CUI Chao, TANG Zheng, Rebesco M, et al. Sedimentary records of enhanced deep ventilation during the last deglacialtion in the Ross Sea, Southern Ocean [J]. Quaternary Sciences, 2021, 41(3): 678-690. |
[47] | WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age [J]. Nature, 2015, 520(7549): 661-665. doi: 10.1038/nature14401 |
[48] | Murray R W, Knowlton C, Leinen M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope Stage 11 [J]. Global and Planetary Change, 2000, 24(1): 59-78. doi: 10.1016/S0921-8181(99)00066-1 |
[49] | 宋乐慧, 韩喜彬, 李家彪, 等. 罗斯海西部末次冰盛期以来沉积环境重建: 有机碳与生物标志化合物分析[J]. 海洋学报, 2019, 41(9):52-64 SONG Lehui, HAN Xibin, LI Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses [J]. Acta Oceanologica Sinica, 2019, 41(9): 52-64. |
[50] | Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0 |
[51] | 刘瑞娟, 于培松, 扈传昱, 等. 南极普里兹湾沉积物中有机碳和总氮的含量与分布[J]. 海洋学报, 2014, 36(4):118-125 LIU Ruijuan, YU Peisong, HU Chuanyu, et al. Contents and distributions of organic carbon and total nitrogen in sediments of Prydz Bay, Antarctic [J]. Acta Oceanologica Sinica, 2014, 36(4): 118-125. |
[52] | Kristensen E, Blackburn T H. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia [J]. Journal of Marine Research, 1987, 45(1): 231-257. doi: 10.1357/002224087788400927 |
[53] | Francois R, Altabet M A, Burckle L H, et al. Glacial to interglacial changes in surface nitrate utilization in the Indian Sector of the Southern Ocean as recorded by sediment δ15N [J]. Paleoceanography, 1992, 7(5): 589-606. doi: 10.1029/92PA01573 |
[54] | Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization [J]. Global biogeochemical cycles, 1994, 8(1): 103-116. doi: 10.1029/93GB03396 |
[55] | Holmansen O, Naganobu M, Kawaguchi S, et al. Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(12-13): 1333-1350. doi: 10.1016/j.dsr2.2004.06.015 |
[56] | Korb R E, Whitehouse M J, Ward P, et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: Implications for the export of biogenic carbon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 59: 67-77. |
[57] | Studer A S, Sigman D M, Martínez‐García A, et al. Antarctic Zone nutrient conditions during the last two glacial cycles [J]. Paleoceanography, 2015, 30(7): 845-862. doi: 10.1002/2014PA002745 |
[58] | Fudge, T. J., et al. Onset of deglacial warming in West Antarctica driven by local orbital forcing [J]. Nature, 2013, 500(7463): 440-444. doi: 10.1038/nature12376 |
[59] | Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles [J]. Nature, 2006, 440(7083): 491-496. doi: 10.1038/nature04614 |
[60] | Mackintosh A, Golledge N, Domack E, et al. Retreat of the East Antarctic ice sheet during the last glacial termination [J]. Nature Geoscience, 2011, 4(3): 195-202. doi: 10.1038/ngeo1061 |
[61] | Xiao W, Esper O, Gersonde R. Last Glacial-Holocene climate variability in the Atlantic sector of the Southern Ocean [J]. Quaternary Science Reviews, 2016, 135: 115-137. doi: 10.1016/j.quascirev.2016.01.023 |
[62] | Kemeny P C, Kast E R, Hain M P, et al. A seasonal model of nitrogen isotopes in the ice age Antarctic Zone: Support for weakening of the Southern Ocean upper overturning cell [J]. Paleoceanography and Paleoclimatology, 2018, 33(12): 1453-1471. doi: 10.1029/2018PA003478 |
[63] | Stephens B B, Keeling R F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations [J]. Nature, 2000, 404(6774): 171-174. doi: 10.1038/35004556 |
[64] | Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate [J]. Nature, 2004, 428(6978): 59-63. doi: 10.1038/nature02357 |
[65] | Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments [J]. Paleoceanography, 2012, 27(4): 89-108. |
[66] | Martin J H, Gordon M, Fitzwater S E. The case for iron [J]. Limnology and Oceanography, 1991, 36(8): 1793-1802. doi: 10.4319/lo.1991.36.8.1793 |
[67] | Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957 |
[68] | Veres D, Bazin L, Landais A, et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years [J]. Climate of the Past, 2013, 9(4): 1733-1748. doi: 10.5194/cp-9-1733-2013 |
[69] | McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes [J]. Nature, 2004, 428(6985): 834-837. doi: 10.1038/nature02494 |
[70] | Hinkley T K, Matsumoto A. Atmospheric regime of dust and salt through 75, 000 years of Taylor Dome ice core: Refinement by measurement of major, minor, and trace metal suites [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D16): 18487-18493. doi: 10.1029/2000JD900550 |
[71] | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth [J]. Astronomy and Astrophysics, 2004, 428(2): 261-285. |
[72] | Ship S, Anderson J, Domack E. Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1-geophysical results [J]. GSA Bulletin, 1999, 111(10): 1486-1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2 |
[73] | Wang Z M, Zhang X D, Guan Z Y, et al. An atmospheric origin of the multi-decadal bipolar seesaw [J]. Scientific Reports, 2015, 5(1): 8909. doi: 10.1038/srep08909 |
[74] | Siani G, Michel E, De Pol-Holz R, et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation [J]. Nature Communications, 2013, 4(1): 2758. doi: 10.1038/ncomms3758 |
[75] | 史久新. 南极冰架-海洋相互作用研究综述[J]. 极地研究, 2018, 30(3):287-302 doi: 10.13679/j.jdyj.20180046 SHI Jiuxin. A review of ice shelf - ocean interaction in Antarctica [J]. Chinese Journal of Polar Research, 2018, 30(3): 287-302. doi: 10.13679/j.jdyj.20180046 |
[76] | Hall B L, Denton G H, Heath S L, et al. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation [J]. Nature Geoscience, 2015, 8(8): 625-628. doi: 10.1038/ngeo2478 |
[77] | Taylor F, Whitehead J, Domack E. Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record [J]. Marine Micropaleontology, 2001, 41(1-2): 25-43. doi: 10.1016/S0377-8398(00)00049-9 |
[78] | Rahmstorf S. Ocean circulation and climate during the past 120, 000 years [J]. Nature, 2002, 419(6903): 207-214. doi: 10.1038/nature01090 |
[79] | Barbante C, Barnola J M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica [J]. Nature, 2006, 444(7116): 195-198. doi: 10.1038/nature05301 |
[80] | Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441 |
[81] | Ellwood M J, Wille M, Maher W. Glacial silicic acid concentrations in the Southern Ocean [J]. Science, 2010, 330(6007): 1088-1091. doi: 10.1126/science.1194614 |
[82] | Waldmann N, Ariztegui D, Anselmetti F S, et al. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54°S), Patagonia [J]. Journal of Quaternary Science, 2010, 25(7): 1063-1075. doi: 10.1002/jqs.1263 |
[83] | Domack E, Leventer A, Dunbar R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic [J]. The Holocene, 2001, 11(1): 1-9. doi: 10.1191/095968301673881493 |
[84] | Torricella F, Melis R, Malinverno E, et al. Environmental and oceanographic conditions at the continental margin of the central basin, Northwestern Ross Sea (Antarctica) since the Last Glacial Maximum [J]. Geosciences, 2021, 11(4): 155. doi: 10.3390/geosciences11040155 |
The locations of Core ANT32-RB16C and other cores, and regional currents in the Ross Sea
Sedimentary column and age model of Core ANT32-RB16C [49]
Correlation analysis between TOC and TN (a), TOC and TOC/TN (b) in the ANT32-RB16C sediment
Variation trends of the paleoproductivity in the Ross Sea since LGM
Evolution pattern of paleoproductivity in the Ross Sea since LGM[84]