2023 Vol. 43, No. 1
Article Contents

DING Xue, HU Bangqi, ZHAO Jingtao, WANG Feifei, HUANG Wei, LI Panfeng, LIU Jia, GUO Jianwei, CUI Ruyong. Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 61-70. doi: 10.16562/j.cnki.0256-1492.2022122402
Citation: DING Xue, HU Bangqi, ZHAO Jingtao, WANG Feifei, HUANG Wei, LI Panfeng, LIU Jia, GUO Jianwei, CUI Ruyong. Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 61-70. doi: 10.16562/j.cnki.0256-1492.2022122402

Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance

More Information
  • The Philippine Sea, with its special geographical location, is rich in frontier geoscience issues and is a natural laboratory for studying the Earth multi-layer interactions. In recent years, the southern section of the Kyushu-Palau Ridge in the central Philippine Sea has become a hot spot for geoscience research, but its surface sediment provenance and sedimentary environment are not yet well understood. The sediment geochemistry of 69 stations collected from the southern section of the Kyushu-Palau Ridge at water depths of 3900-6100m was studied to identify the spatial variability of sediment provenance and depositional environments. The results show that the sediment types in the study area are pelagic clay and siliceous ooze, and the clastic components of sediment are less chemically weathered, less affected by sorting and recycling, and are mixed products of Asian dust materials and island-arc volcanic materials, of which Asian dust materials are dominated; and the different types of sediment in the study area are basically in an oxidative depositional environment, and the bottom water redox conditions are not a controlling factor for the enrichment of transition metal (e.g., Mo) elements in the sediments, indicating that Fe-Mn (oxyhydr)oxides are an important link between the source-sink processes of transition metal elements at the water-sediment interface. In addition, bottom redox conditions may not be necessary for the preservation of diatom mats.

  • 加载中
  • [1] 宋维宇, 刘娅楠, 胡邦琦, 等. 基于DEM数据的菲律宾海典型区地貌类型划分[J]. 海洋地质与第四纪地质, 2021, 41(1):192-198

    Google Scholar

    SONG Weiyu, LIU Yanan, HU Bangqi, et al. Landform classification for the Philippine Sea based on DEM data [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 192-198.

    Google Scholar

    [2] 张国伟, 李三忠. 西太平洋-北印度洋及其洋陆过渡带: 古今演变与论争[J]. 海洋地质与第四纪地质, 2017, 37(4):1-17

    Google Scholar

    ZHANG Guowei, LI Sanzhong. West Pacific and North Indian Oceans and their ocean-continent connection zones: Evolution and debates [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17.

    Google Scholar

    [3] 李春峰, 周多, 李刚, 等. 西太平洋地球动力学问题与未来大洋钻探目标[J]. 地球科学, 2021, 46(3):759-769

    Google Scholar

    LI Chunfeng, ZHOU Duo, LI Gang, et al. Geodynamic problems in the Western Pacific and future scientific drill targets [J]. Earth Science, 2021, 46(3): 759-769.

    Google Scholar

    [4] 杜学鑫, 祝文君, 牟明杰, 等. 菲律宾海板块俯冲与岛弧演化的钻探靶区研究[J]. 海洋地质与第四纪地质, 2022, 42(5):199-210

    Google Scholar

    DU Xuexin, ZHU Wenjun, MOU Mingjie, et al. Study on drilling target area of subduction of Philippine Sea plate and island arc evolution [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 199-210.

    Google Scholar

    [5] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219

    Google Scholar

    WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west Pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.

    Google Scholar

    [6] Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle [J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211

    CrossRef Google Scholar

    [7] Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929

    CrossRef Google Scholar

    [8] Jiang F Q, Zhou Y, Nan Q Y, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes [J]. Journal of Geophysical Research:Oceans, 2016, 121(9): 6911-6928. doi: 10.1002/2016JC012000

    CrossRef Google Scholar

    [9] Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116

    CrossRef Google Scholar

    [10] 明洁, 李安春, 孟庆勇, 等. 东菲律宾海帕里西维拉海盆第四纪黏土矿物组合特征及物源分析[J]. 海洋地质与第四纪地质, 2012, 32(4):139-148

    Google Scholar

    MING Jie, LI Anchun, MENG Qingyong, et al. Quaternary assemblage characteristic and provenance of clay minerals in the Parecevela Basin of the East Philippine Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148.

    Google Scholar

    [11] 靳宁, 李安春, 刘海志, 等. 帕里西维拉海盆西北部表层沉积物中黏土矿物的分布特征及物源分析[J]. 海洋与湖沼, 2007, 38(6):504-511

    Google Scholar

    JIN Ning, LI Anchun, LIU Haizhi, et al. Clay minerals in surface sediment of the northwest Parece Vela Basin: distribution and provenance [J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511.

    Google Scholar

    [12] 黄杰, 万世明, 张国良, 等. 海底地形特征对东菲律宾海表层黏土矿物分布的影响[J]. 海洋地质与第四纪地质, 2017, 37(1):77-85

    Google Scholar

    HUANG Jie, WAN Shiming, ZHANG Guoliang, et al. Impact of seafloor topography on distribution of clay minerals in the East Philippines Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 77-85.

    Google Scholar

    [13] Qin X W, Luo W D, Li P F, et al. Topographic and geomorphological features and tectogenesis of the southern section of the Kyushu-Palau Ridge (KPR) and its adjacent areas [J]. China Geology, 2021, 4(4): 571-584.

    Google Scholar

    [14] Shang L N, Li P F, Du R L, et al. Structural characteristics of the KPR-CBR triple-junction inferred from gravity and magnetic interpretations, Philippine Sea Plate [J]. China Geology, 2021, 4(4): 541-552. doi: 10.31035/cg2021089

    CrossRef Google Scholar

    [15] 侯方辉, 秦轲, 陆凯, 等. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始: 多道反射地震综合研究[J]. 海洋地质与第四纪地质, 2022, 42(5):187-198

    Google Scholar

    HOU Fanghui, QIN Ke, LU Kai, et al. Tectono-sedimentary characteristics and subduction initiation in the middle Kyushu-Palau Ridge and adjacent basins: A comprehensive study of multichannel seismic reflection profiles [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 187-198.

    Google Scholar

    [16] 黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5):137-148 doi: 10.16562/j.cnki.0256-1492.2022052401

    CrossRef Google Scholar

    HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401

    CrossRef Google Scholar

    [17] 黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1):199-209

    Google Scholar

    HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209.

    Google Scholar

    [18] 宋维宇, 李超, 孟祥君, 等. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义[J]. 海洋地质与第四纪地质, 2022, 42(5):149-157 doi: 10.16562/j.cnki.0256-1492.2022061701

    CrossRef Google Scholar

    SONG Weiyu, LI Chao, MENG Xiangjun, et al. Geochemical characteristics and resource significance of polymetallic nodules and cobalt-rich crusts in the southern Kyushu-Palau ridge [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 149-157. doi: 10.16562/j.cnki.0256-1492.2022061701

    CrossRef Google Scholar

    [19] Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8

    CrossRef Google Scholar

    [20] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504

    CrossRef Google Scholar

    [21] Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Elsevier: Oxford, 2014: 1-51.

    Google Scholar

    [22] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [23] McLennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    [24] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [25] Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.

    Google Scholar

    [26] Sun J M, Zhu X K. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: Implications for provenance change [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 438-447. doi: 10.1016/j.jpgl.2010.01.001

    CrossRef Google Scholar

    [27] Chen B, Yang X P, Jiang Q D, et al. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: Implications for weathering, recycling, and provenance [J]. CATENA, 2022, 208: 105769. doi: 10.1016/j.catena.2021.105769

    CrossRef Google Scholar

    [28] Zhang Q, Liu Q S, Roberts A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior? [J]. Geology, 2020, 48(1): 77-81. doi: 10.1130/G46862.1

    CrossRef Google Scholar

    [29] McLennan S M, Hemming S R, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics [J]. Special Papers-Geological Society of America, 1993, 284: 21-40.

    Google Scholar

    [30] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [31] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones [J]. Journal of the Geological Society, 1987, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531

    CrossRef Google Scholar

    [32] Shao L, Li X H, Wei G J, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea [J]. Science in China Series D:Earth Sciences, 2001, 44(10): 919-925. doi: 10.1007/BF02907084

    CrossRef Google Scholar

    [33] Wei G J, Liu Y, Ma J L, et al. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing [J]. Marine Geology, 2012, 319-322: 21-34. doi: 10.1016/j.margeo.2012.05.007

    CrossRef Google Scholar

    [34] Olivarez A M, Owen R M, Rea D K. Geochemistry of eolian dust in Pacific pelagic sediments: Implications for paleoclimatic interpretations [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158. doi: 10.1016/0016-7037(91)90093-K

    CrossRef Google Scholar

    [35] 丁雪, 胡邦琦, 徐方建, 等. 晚上新世以来菲律宾海盆XT4孔黏土矿物特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(1):42-51 doi: 10.16562/j.cnki.0256-1492.2020111301

    CrossRef Google Scholar

    DING Xue, HU Bangqi, XU Fangjian, et al. Evolution of clay minerals assemblages since Late Pliocene and its paleoenvironmental implications: Evidence from Core XT4 of the Philippine Sea Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 42-51. doi: 10.16562/j.cnki.0256-1492.2020111301

    CrossRef Google Scholar

    [36] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53(6):923-931 doi: 10.3321/j.issn:0023-074X.2008.06.013

    CrossRef Google Scholar

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Geochemical character and material source of sediments in the eastern Philippine Sea [J]. Chinese Science Bulletin, 2008, 53(6): 923-931. doi: 10.3321/j.issn:0023-074X.2008.06.013

    CrossRef Google Scholar

    [37] 褚征, 胡宁静, 刘季花, 等. 西菲律宾海表层沉积物稀土元素地球化学特征及物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(5):53-62 doi: 10.16562/j.cnki.0256-1492.2016.05.006

    CrossRef Google Scholar

    CHU Zheng, HU Ningjing, LIU Jihua, et al. Rare earth elements in sediments of west Philippine Sea and their implications for sediment provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 53-62. doi: 10.16562/j.cnki.0256-1492.2016.05.006

    CrossRef Google Scholar

    [38] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025

    CrossRef Google Scholar

    [39] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid- Pleistocene inferred from radiogenic Sr and Nd isotopes [J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011

    CrossRef Google Scholar

    [40] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [41] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography [J]. Chemical Geology, 2012, 324-325: 46-58. doi: 10.1016/j.chemgeo.2011.09.009

    CrossRef Google Scholar

    [42] Bennett W W, Canfield D E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments [J]. Earth-Science Reviews, 2020, 204: 103175. doi: 10.1016/j.earscirev.2020.103175

    CrossRef Google Scholar

    [43] Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems [J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. doi: 10.1016/j.gca.2020.01.055

    CrossRef Google Scholar

    [44] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    CrossRef Google Scholar

    [45] Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015

    CrossRef Google Scholar

    [46] Krishnaswami S. Authigenic transition elements in Pacific pelagic clays [J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 425-434. doi: 10.1016/0016-7037(76)90007-7

    CrossRef Google Scholar

    [47] Piper D Z. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean: A source of metals in ferromanganese nodules [J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2127-2145. doi: 10.1016/0016-7037(88)90193-7

    CrossRef Google Scholar

    [48] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. [J]. Chemical Geology, 1992, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y

    CrossRef Google Scholar

    [49] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X

    CrossRef Google Scholar

    [50] Wignall P B, Twitchett R J. Oceanic anoxia and the end permian mass extinction [J]. Science, 1996, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155

    CrossRef Google Scholar

    [51] Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA) [J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029

    CrossRef Google Scholar

    [52] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    CrossRef Google Scholar

    [53] Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1364) PDF downloads(36) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint