2023 Vol. 43, No. 1
Article Contents

ZHANG Zhenhu, YAO Zhengquan, HU Limin, Anatolii Astakhov, ZOU Jianjun, LIU Yanguang, WANG Kunshan, YANG Gang, CHEN Zhihua, XIA Yi, LI Qiuling, FENG Han, SHI Xuefa. Distribution characteristics and implications of mercury in the surface sediments of the East Siberian Arctic Shelf[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 49-60. doi: 10.16562/j.cnki.0256-1492.2022071801
Citation: ZHANG Zhenhu, YAO Zhengquan, HU Limin, Anatolii Astakhov, ZOU Jianjun, LIU Yanguang, WANG Kunshan, YANG Gang, CHEN Zhihua, XIA Yi, LI Qiuling, FENG Han, SHI Xuefa. Distribution characteristics and implications of mercury in the surface sediments of the East Siberian Arctic Shelf[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 49-60. doi: 10.16562/j.cnki.0256-1492.2022071801

Distribution characteristics and implications of mercury in the surface sediments of the East Siberian Arctic Shelf

More Information
  • Global warming is leading to permafrost degradation, sea-ice melt, increased river runoff, and changes in ocean dynamics in the Arctic region. These factors, plus the increasing human activities, affects the input and transport of mercury in the Arctic Ocean. We analyzed the mercury content in 87 surface sediments (0~2 cm) sampled in the East Siberian Arctic Shelf in the Chukchi Sea, East Siberian Sea, and Laptev Sea during three Sino-Russian Arctic joint expeditions in 2016, 2018, and 2020 at water depth of 9~2546 m. Results show a significant spatial variability in mercury concentration, which can be divided into the nearshore low-mercury zones (33 ng/g), the middle shelf medium-mercury zone (58 ng/g), and the northern deep water high-mercury zone (84 ng/g). In general, the mercury concentration tended to increase with water depth increasing from nearshore toward offshore. Analyses of sediment grain size, total organic carbon, and specific surface area of sediments show that the mercury concentration was positively correlated with the clay content in the surface sediments, indicating the controlling role of sediment grain size in the distribution of mercury. The coarse sediments in the nearshore showed lower mercury concentration due to the influence of river input, coastal erosion, and hydrodynamic sorting, while the fine-grained sediments in the northern shelf are prone to absorb more mercury. There was a strong positive correlation between mercury and total organic carbon in the Chukchi and Laptev Seas, while the correlation was weaker in the East Siberian Sea due probably to more-complexed source of total organic carbon. The enrichment factor of mercury manifests that the overall level of contamination of sedimentary mercury is low at present in the East Siberian Arctic Shelf area, showing relatively weak influence of human activities.

  • 加载中
  • [1] Selin N E. Global biogeochemical cycling of mercury: a review [J]. Annual Review of Environment and Resources, 2009, 34: 43-63. doi: 10.1146/annurev.environ.051308.084314

    CrossRef Google Scholar

    [2] Sonke J E, Heimbürger L E. Mercury in flux [J]. Nature Geoscience, 2012, 5(7): 447-448. doi: 10.1038/ngeo1508

    CrossRef Google Scholar

    [3] Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition [J]. AMBIO:A Journal of the Human Environment, 2007, 36(1): 19-32. doi: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2

    CrossRef Google Scholar

    [4] Aksentov K I, Astakhov A S, Ivanov M V, et al. Assessment of mercury levels in modern sediments of the East Siberian Sea [J]. Marine Pollution Bulletin, 2021, 168: 112426. doi: 10.1016/j.marpolbul.2021.112426

    CrossRef Google Scholar

    [5] Kita I, Kojima M, Hasegawa H, et al. Mercury content as a new indicator of ocean stratification and primary productivity in Quaternary sediments off Bahama Bank in the Caribbean Sea [J]. Quaternary Research, 2013, 80(3): 606-613. doi: 10.1016/j.yqres.2013.08.006

    CrossRef Google Scholar

    [6] Kita I, Yamashita T, Chiyonobu S, et al. Mercury content in Atlantic sediments as a new indicator of the enlargement and reduction of Northern Hemisphere ice sheets [J]. Journal of Quaternary Science, 2016, 31(3): 167-177. doi: 10.1002/jqs.2854

    CrossRef Google Scholar

    [7] Scaife J D, Ruhl M, Dickson A J, et al. Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? Evidence from the Mid-Cenomanian event and Oceanic Anoxic Event 2 (Late Cretaceous) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4253-4275. doi: 10.1002/2017GC007153

    CrossRef Google Scholar

    [8] Font E, Adatte T, Andrade M, et al. Deccan volcanism induced high-stress environment during the Cretaceous-Paleogene transition at Zumaia, Spain: evidence from magnetic, mineralogical and biostratigraphic records [J]. Earth and Planetary Science Letters, 2018, 484: 53-66. doi: 10.1016/j.jpgl.2017.11.055

    CrossRef Google Scholar

    [9] Grasby S E, Them II T R, Chen Z H, et al. Mercury as a proxy for volcanic emissions in the geologic record [J]. Earth-Science Reviews, 2019, 196: 102880. doi: 10.1016/j.earscirev.2019.102880

    CrossRef Google Scholar

    [10] Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: sedimentary mercury variations over the last 20 kyr [J]. Paleoceanography, 2017, 32(6): 571-579. doi: 10.1002/2017PA003116

    CrossRef Google Scholar

    [11] Zou J J, Chang Y P, Zhu A M, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current [J]. Quaternary Science Reviews, 2021, 265: 107051. doi: 10.1016/j.quascirev.2021.107051

    CrossRef Google Scholar

    [12] Krabbenhoft D P, Sunderland E M. Global change and mercury [J]. Science, 2013, 341(6153): 1457-1458. doi: 10.1126/science.1242838

    CrossRef Google Scholar

    [13] Schuster P F, Striegl R G, Aiken G R, et al. Mercury export from the Yukon River basin and potential response to a changing climate [J]. Environmental Science & Technology, 2011, 45(21): 9262-9267.

    Google Scholar

    [14] Dastoor A P, Durnford D A. Arctic ocean: is it a sink or a source of atmospheric mercury? [J]. Environmental Science & Technology, 2014, 48(3): 1707-1717.

    Google Scholar

    [15] Stern G A, Macdonald R W, Outridge P M, et al. How does climate change influence arctic mercury? [J]. Science of the Total Environment, 2012, 414: 22-42. doi: 10.1016/j.scitotenv.2011.10.039

    CrossRef Google Scholar

    [16] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021.

    Google Scholar

    [17] Obrist D, Agnan Y, Jiskra M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution [J]. Nature, 2017, 547(7662): 201-204. doi: 10.1038/nature22997

    CrossRef Google Scholar

    [18] Outridge P M, Macdonald R W, Wang F, et al. A mass balance inventory of mercury in the Arctic Ocean [J]. Environmental Chemistry, 2008, 5(2): 89-111. doi: 10.1071/EN08002

    CrossRef Google Scholar

    [19] Fisher J A, Jacob D J, Soerensen A L, et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations [J]. Nature Geoscience, 2012, 5(7): 499-504. doi: 10.1038/ngeo1478

    CrossRef Google Scholar

    [20] AMAP. AMAP Assessment 2002: Heavy Metals in the Arctic[M]. Oslo: Arctic Monitoring and Assessment Programme, 2004.

    Google Scholar

    [21] Steffen A, Douglas T, Amyot M, et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow [J]. Atmospheric Chemistry and Physics, 2008, 8(6): 1445-1482. doi: 10.5194/acp-8-1445-2008

    CrossRef Google Scholar

    [22] Zhang Y X, Jacob D J, Dutkiewicz S, et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans [J]. Global Biogeochemical Cycles, 2015, 29(6): 854-864. doi: 10.1002/2015GB005124

    CrossRef Google Scholar

    [23] Kim H, Lee K, Lim D I, et al. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean [J]. Science of the Total Environment, 2019, 654: 801-810. doi: 10.1016/j.scitotenv.2018.11.076

    CrossRef Google Scholar

    [24] Darby D A, Polyak L, Bauch H A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas-a review [J]. Progress in Oceanography, 2006, 71(2-4): 129-144. doi: 10.1016/j.pocean.2006.09.009

    CrossRef Google Scholar

    [25] Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia [J]. Nature, 2012, 489(7414): 137-140. doi: 10.1038/nature11392

    CrossRef Google Scholar

    [26] Shakhova N, Semiletov I, Gustafsson O, et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf [J]. Nature Communications, 2017, 8: 15872. doi: 10.1038/ncomms15872

    CrossRef Google Scholar

    [27] Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific‐Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean) [J]. Journal of Quaternary Science, 2017, 32(3): 362-379. doi: 10.1002/jqs.2929

    CrossRef Google Scholar

    [28] Opsahl S, Benner R, Amon R M W. Major flux of terrigenous dissolved organic matter through the Arctic Ocean [J]. Limnology and Oceanography, 1999, 44(8): 2017-2023. doi: 10.4319/lo.1999.44.8.2017

    CrossRef Google Scholar

    [29] Stein R. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment[M]. Amsterdam: Elsevier, 2008.

    Google Scholar

    [30] Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans [J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.

    Google Scholar

    [31] Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 1098.

    Google Scholar

    [32] Guay C K, Falkner K K. Barium as a tracer of Arctic halocline and river waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1997, 44(8): 1543-1569. doi: 10.1016/S0967-0645(97)00066-0

    CrossRef Google Scholar

    [33] Dastoor A, Angot H, Bieser J, et al. Arctic mercury cycling [J]. Nature Reviews Earth & Environment, 2022, 3(4): 270-286.

    Google Scholar

    [34] Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean [J]. Science, 2002, 298(5601): 2171-2173. doi: 10.1126/science.1077445

    CrossRef Google Scholar

    [35] Sonke J E, Teisserenc R, Heimbürger-Boavida L E, et al. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): E11586-E11594.

    Google Scholar

    [36] Zolkos S, Krabbenhoft D P, Suslova A, et al. Mercury export from arctic great rivers [J]. Environmental Science & Technology, 2020, 54(7): 4140-4148.

    Google Scholar

    [37] Gordeev V V. Fluvial sediment flux to the Arctic Ocean [J]. Geomorphology, 2006, 80(1-2): 94-104. doi: 10.1016/j.geomorph.2005.09.008

    CrossRef Google Scholar

    [38] Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: a wind- and buoyancy-forced Arctic coastal current [J]. Journal of Geophysical Research:Oceans, 1999, 104(C12): 29697-29713. doi: 10.1029/1999JC900161

    CrossRef Google Scholar

    [39] 李日升, 郭跃安, 孙冬娥, 等. 化学蒸气发生-多通道原子荧光光谱法同时测定化探样品中的砷、锑、铋、汞[J]. 理化检验(化学分册), 2014, 50(5):569-571

    Google Scholar

    LI Risheng, GUO Yuean, SUN Donge, et al. Simultaneous determination of As, Sb, Bi, and Hg in geological samples by Hg-Multi-channel-AFS [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(5): 569-571.

    Google Scholar

    [40] Wedepohl K H. The composition of the continental crust [J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [41] Sattarova V, Aksentov K, Astakhov A, et al. Trace metals in surface sediments from the Laptev and East Siberian Seas: levels, enrichment, contamination assessment, and sources [J]. Marine Pollution Bulletin, 2021, 173: 112997. doi: 10.1016/j.marpolbul.2021.112997

    CrossRef Google Scholar

    [42] Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China: weathering features, anthropogenic impact and chemical fluxes [J]. Estuarine, Coastal and Shelf Science, 2002, 54(6): 1051-1070. doi: 10.1006/ecss.2001.0879

    CrossRef Google Scholar

    [43] Chakraborty P, Sarkar A, Vudamala K, et al. Organic matter: a key factor in controlling mercury distribution in estuarine sediment [J]. Marine Chemistry, 2015, 173: 302-309. doi: 10.1016/j.marchem.2014.10.005

    CrossRef Google Scholar

    [44] 赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983(4):307-314

    Google Scholar

    ZHAO Yiyang. Some geochemical patterns of shelf sediments of the China seas [J]. Scientia Geologica Sinica, 1983(4): 307-314.

    Google Scholar

    [45] 李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3):76-89

    Google Scholar

    LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian Arctic Shelf: evidence from clay minerals and chemical elements [J]. Haiyang Xuebao, 2021, 43(3): 76-89.

    Google Scholar

    [46] Thorne L T, Nickless G. The relation between heavy metals and particle size fractions within the severn estuary (U. K. ) inter-tidal sediments [J]. Science of the Total Environment, 1981, 19(3): 207-213. doi: 10.1016/0048-9697(81)90017-6

    CrossRef Google Scholar

    [47] Araújo M F D, Bernard P C, Van Grieken R E. Heavy metal contamination in sediments from the Belgian coast and Scheldt estuary [J]. Marine Pollution Bulletin, 1988, 19(6): 269-273. doi: 10.1016/0025-326X(88)90597-8

    CrossRef Google Scholar

    [48] 夏逸. 北极拉普捷夫海现代沉积有机碳源汇过程与埋藏记录[D]. 自然资源部第一海洋研究所硕士学位论文, 2022

    Google Scholar

    XIA Yi. Source sink processes and burial records of modern sedimentary organic carbon in the Arctic Laptev Sea[D]. Master Dissertation of First Institute of Oceanography, Ministry of Natural Resources, 2022.

    Google Scholar

    [49] 叶君, 胡利民, 石学法, 等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究, 2021, 41(3):752-765 doi: 10.11928/j.issn.1001-7410.2021.03.11

    CrossRef Google Scholar

    YE Jun, HU Limin, SHI Xuefa, et al. Sources, transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic shelf, insights from lignin [J]. Quaternary Sciences, 2021, 41(3): 752-765. doi: 10.11928/j.issn.1001-7410.2021.03.11

    CrossRef Google Scholar

    [50] 于文秀, 胡利民, 石学法, 等. 北极东西伯利亚陆架黑碳的地球化学特征及其环境意义[J]. 海洋地质与第四纪地质, 2022, 42(4):50-60 doi: 10.16562/j.cnki.0256-1492.2022022001

    CrossRef Google Scholar

    YU Wenxiu, HU Limin, SHI Xuefa, et al. Geochemical characteristics of black carbon in surface sediments of the East Siberian Arctic Shelf and their environmental implications [J]. Marine Geology & Quaternary Geology, 2022, 42(4): 50-60. doi: 10.16562/j.cnki.0256-1492.2022022001

    CrossRef Google Scholar

    [51] Stein R. The great challenges in Arctic Ocean paleoceanography [J]. IOP Conference Series:Earth and Environmental Science, 2011, 14: 012001. doi: 10.1088/1755-1315/14/1/012001

    CrossRef Google Scholar

    [52] Stein R, Fahl K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks [J]. Geo-Marine Letters, 2000, 20(1): 27-36. doi: 10.1007/s003670000028

    CrossRef Google Scholar

    [53] Semiletov I, Dudarev O, Luchin V, et al. The East Siberian Sea as a transition zone between Pacific‐derived waters and Arctic shelf waters [J]. Geophysical Research Letters, 2005, 32(10): L10614. doi: 10.1029/2005GL022490

    CrossRef Google Scholar

    [54] Karlsson E S, Brüchert V, Tesi T, et al. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers [J]. Marine Chemistry, 2015, 170: 11-22. doi: 10.1016/j.marchem.2014.12.005

    CrossRef Google Scholar

    [55] Savelieva N I, Semiletov I P, Vasilevskaya L N, et al. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia [J]. Progress in Oceanography, 2000, 47(2-4): 279-297. doi: 10.1016/S0079-6611(00)00039-2

    CrossRef Google Scholar

    [56] Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness [J]. The Cryosphere, 2014, 8(5): 1839-1854. doi: 10.5194/tc-8-1839-2014

    CrossRef Google Scholar

    [57] 胡利民, 石学法, 叶君, 等. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10):1073-1086 doi: 10.11867/j.issn.1001-8166.2020.086

    CrossRef Google Scholar

    HU Limin, SHI Xuefa, YE Jun, et al. Advances in the sources and sink of sedimentary organic carbon in the East Siberian Arctic Shelf [J]. Advances in Earth Science, 2020, 35(10): 1073-1086. doi: 10.11867/j.issn.1001-8166.2020.086

    CrossRef Google Scholar

    [58] Macdonald R W, Kuzyk Z Z A, Johannessen S C, et al. The vulnerability of Arctic shelf sediments to climate change [J]. Environmental Reviews, 2015, 23(4): 461-479. doi: 10.1139/er-2015-0040

    CrossRef Google Scholar

    [59] Chen L, Zhang Y X, Jacob D J, et al. A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes [J]. Geophysical Research Letters, 2015, 42(14): 6076-6083. doi: 10.1002/2015GL064051

    CrossRef Google Scholar

    [60] Emmerton C A, Graydon J A, Gareis J A L, et al. Mercury export to the Arctic Ocean from the Mackenzie River, Canada [J]. Environmental Science & Technology, 2013, 47(14): 7644-7654.

    Google Scholar

    [61] St. Pierre K A, Zolkos S, Shakil S, et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic [J]. Environmental Science & Technology, 2018, 52(24): 14099-14109.

    Google Scholar

    [62] Schaefer K, Elshorbany Y, Jafarov E, et al. Potential impacts of mercury released from thawing permafrost [J]. Nature Communications, 2020, 11(1): 4650. doi: 10.1038/s41467-020-18398-5

    CrossRef Google Scholar

    [63] Søndergaard J, Tamstorf M, Elberling B, et al. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods [J]. Science of the Total Environment, 2015, 514: 83-91. doi: 10.1016/j.scitotenv.2015.01.097

    CrossRef Google Scholar

    [64] Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury [J]. Annual Review of Ecology and Systematics, 1998, 29: 543-566. doi: 10.1146/annurev.ecolsys.29.1.543

    CrossRef Google Scholar

    [65] Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19473-19481. doi: 10.1073/pnas.1017982108

    CrossRef Google Scholar

    [66] Rontani J F, Charrière B, Sempéré R, et al. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic [J]. Organic Geochemistry, 2014, 75: 61-73. doi: 10.1016/j.orggeochem.2014.06.002

    CrossRef Google Scholar

    [67] 汪卫国, 方建勇, 陈莉莉, 等. 楚科奇海悬浮体含量分布及其颗粒组分特征[J]. 极地研究, 2014, 26(1):79-88 doi: 10.13679/j.jdyj.2014.1.079

    CrossRef Google Scholar

    WANG Weiguo, FANG Jianyong, CHEN Lili, et al. The distribution and composition of suspended particles in the Chukchi Sea [J]. Chinese Journal of Polar Research, 2014, 26(1): 79-88. doi: 10.13679/j.jdyj.2014.1.079

    CrossRef Google Scholar

    [68] 王春娟, 刘焱光, 董林森, 等. 白令海与西北冰洋表层沉积物粒度分布特征及其环境意义[J]. 海洋地质与第四纪地质, 2015, 35(3):1-9

    Google Scholar

    WANG Chunjuan, LIU Yanguang, DONG Linsen, et al. The distribution pattern of the surface sediments in the Bering Sea and the western Arcric and its environmental implications [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 1-9.

    Google Scholar

    [69] Nürnberg D, Wollenburg I, Dethleff D, et al. Sediments in Arctic sea ice: implications for entrainment, transport and release [J]. Marine Geology, 1994, 119(3-4): 185-214. doi: 10.1016/0025-3227(94)90181-3

    CrossRef Google Scholar

    [70] Charette M A, Kipp L E, Jensen L T, et al. The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015920.

    Google Scholar

    [71] Yurco L N, Ortiz J D, Polyak L, et al. Clay mineral cycles identified by diffuse spectral reflectance in Quaternary sediments from the Northwind Ridge: implications for glacial-interglacial sedimentation patterns in the Arctic Ocean [J]. Polar Research, 2010, 29(2): 176-197. doi: 10.1111/j.1751-8369.2010.00160.x

    CrossRef Google Scholar

    [72] Figueiredo T S, Santos T P, Costa K B, et al. Effect of deep Southwestern Subtropical Atlantic Ocean circulation on the biogeochemistry of mercury during the last two glacial/interglacial cycles [J]. Quaternary Science Reviews, 2020, 239: 106368. doi: 10.1016/j.quascirev.2020.106368

    CrossRef Google Scholar

    [73] Quémerais B, Cossa D, Rondeau B, et al. Mercury distribution in relation to iron and manganese in the waters of the St. Lawrence river [J]. Science of the Total Environment, 1998, 213(1-3): 193-201. doi: 10.1016/S0048-9697(98)00092-8

    CrossRef Google Scholar

    [74] Shen J, Feng Q L, Algeo T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy [J]. Earth and Planetary Science Letters, 2020, 543: 116333. doi: 10.1016/j.jpgl.2020.116333

    CrossRef Google Scholar

    [75] Hasan A B, Kabir S, Reza A H M S, et al. Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary-Kumira), Chittagong, Bangladesh [J]. Journal of Geochemical Exploration, 2013, 125: 130-137. doi: 10.1016/j.gexplo.2012.12.002

    CrossRef Google Scholar

    [76] Kim H, Lee K, Lim D I, et al. Widespread anthropogenic nitrogen in northwestern Pacific Ocean sediments [J]. Environmental Science & Technology, 2017, 51(11): 6044-6052.

    Google Scholar

    [77] Kim J, Lim D, Jung D, et al. Sedimentary mercury (Hg) in the marginal seas adjacent to Chinese high-Hg emissions: source-to-sink, mass inventory, and accumulation history [J]. Marine Pollution Bulletin, 2018, 128: 428-437. doi: 10.1016/j.marpolbul.2018.01.058

    CrossRef Google Scholar

    [78] Astakhov A S, Gorbarenko S A, Bakhareva G A, et al. Distribution and accumulation rate of ore elements in Holocene and Late Glacial Sediments of the Deryugin Basin, Sea of Okhotsk [J]. Lithology and Mineral Resources, 2005, 40(2): 97-113. doi: 10.1007/s10987-005-0012-1

    CrossRef Google Scholar

    [79] Sattarova V V, Aksentov K I. Geochemistry of mercury in surface sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and adjacent abyssal plain and northwest part of the Bering Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 154: 24-31. doi: 10.1016/j.dsr2.2017.09.002

    CrossRef Google Scholar

    [80] Kalinchuk V, Aksentov K, Karnaukh V. Gaseous elemental mercury (Hg (0)) in the surface air over the Sea of Japan, the Sea of Okhotsk and the Kuril-Kamchatka sector of the Pacific Ocean in August-September 2017 [J]. Chemosphere, 2019, 224: 668-679. doi: 10.1016/j.chemosphere.2019.02.185

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1327) PDF downloads(33) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint