2023 Vol. 43, No. 3
Article Contents

WANG Tong, HU Yihao, JIA Qi, GUO Jingteng, TANG Zheng, XIONG Zhifang, LI Tiegang. Productivity evolution in the antarctic Weddell Sea and its paleoceanographic implication since MIS 5[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 144-156. doi: 10.16562/j.cnki.0256-1492.2022112302
Citation: WANG Tong, HU Yihao, JIA Qi, GUO Jingteng, TANG Zheng, XIONG Zhifang, LI Tiegang. Productivity evolution in the antarctic Weddell Sea and its paleoceanographic implication since MIS 5[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 144-156. doi: 10.16562/j.cnki.0256-1492.2022112302

Productivity evolution in the antarctic Weddell Sea and its paleoceanographic implication since MIS 5

More Information
  • The latest hypothesis on the mechanism of glacial/interglacial variation in atmospheric partial pressure of carbon dioxide (pCO2-atm) in the Southern Ocean suggests that the decrease of pCO2-atm during glaciation can be satisfactorily explained by CO2 sequestration via the reduced deep ventilation indicated by the decrease in the Antarctic zone productivity, and the CO2 fixation by the increase in the subantarctic zone productivity. Obviously, verifying the mirror-image relation between productivity evolution in the Antarctic zone and the subantarctic zone in glacial cycles is the key to examine this hypothesis. The productivity evolution in the Weddell Sea (in Antarctic Zone) since MIS 5 was reconstructed based on the biogenic opal content from sediment cores. The results indicate that the productivity in the Weddell Sea showed glacial-interglacial variations, with high productivity during warm periods (MIS 5 and 3) and low productivity during cold periods (MIS 4 and 2), and a long-term decreasing trend was also observed. By combining our productivity records with those of other areas in the Southern Ocean, the mirror-image model of productivity evolution in the Antarctic and subantarctic zones was confirmed. Furthermore, comparison between the productivity records and potential environmental influence factors indicated that the meridional movement of Westerlies as well as the expansion and retreat of sea ice controlled the nutrient availability from deep water into surface by affecting deep convection, and ultimately drove glacial-interglacial and long-term variations of productivity in the Weddell Sea since MIS 5. The sequestration and release of CO2 due to variation of deep convection in the Weddell Sea probably contributed to the long-term trend and glacial-interglacial cycles of pCO2-atm since MIS 5. This research confirms that the above hypothesis about the mechanism for glacial-interglacial pCO2-atm cycles in the Southern Ocean is reasonable, indicating that the Southern Ocean plays an important role in global climate evolution.

  • 加载中
  • [1] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2 [J]. Science, 2004, 305(5682): 367-371. doi: 10.1126/science.1097403

    CrossRef Google Scholar

    [2] Frölicher T L, Sarmiento J L, Paynter D J, et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models [J]. Journal of Climate, 2015, 28(2): 862-886. doi: 10.1175/JCLI-D-14-00117.1

    CrossRef Google Scholar

    [3] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present [J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949

    CrossRef Google Scholar

    [4] Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages [J]. Paleoceanography, 2006, 21(2): PA2005.

    Google Scholar

    [5] Watson A J, Garabato A C N. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change [J]. Tellus B:Chemical and Physical Meteorology, 2006, 58(1): 73-87. doi: 10.1111/j.1600-0889.2005.00167.x

    CrossRef Google Scholar

    [6] Watson A J, Vallis G K, Nikurashin M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2 [J]. Nature Geoscience, 2015, 8(11): 861-864. doi: 10.1038/ngeo2538

    CrossRef Google Scholar

    [7] Jaccard S L, Hayes C T, Martinez-Garcia A, et al. Two modes of change in Southern Ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545

    CrossRef Google Scholar

    [8] Hoppema M, Fahrbach E, Stoll M H C, et al. Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production [J]. Journal of Marine Systems, 1999, 19(4): 219-233. doi: 10.1016/S0924-7963(98)00091-8

    CrossRef Google Scholar

    [9] Brown P J, Jullion L, Landschützer P, et al. Carbon dynamics of the Weddell Gyre, Southern Ocean [J]. Global Biogeochemical Cycles, 2015, 29(3): 288-306. doi: 10.1002/2014GB005006

    CrossRef Google Scholar

    [10] Hoppema M. Weddell Sea turned from source to sink for atmospheric CO2 between pre-industrial time and present [J]. Global and Planetary Change, 2004, 40(3-4): 219-231. doi: 10.1016/j.gloplacha.2003.08.001

    CrossRef Google Scholar

    [11] Hauck J, Völker C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor [J]. Geophysical Research Letters, 2015, 42(5): 1459-1464. doi: 10.1002/2015GL063070

    CrossRef Google Scholar

    [12] Brzezinski M A, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3 depletion in the glacial Southern Ocean [J]. Geophysical Research Letters, 2002, 29(12): 5-1-5-4.

    Google Scholar

    [13] Gilbert I M, Pudsey C J, Murray J W. A sediment record of cyclic bottom-current variability from the northwest Weddell Sea [J]. Sedimentary Geology, 1998, 115(1-4): 185-214. doi: 10.1016/S0037-0738(97)00093-6

    CrossRef Google Scholar

    [14] Pudsey C J, Barker P F, Hamilton N. Weddell Sea abyssal sediments a record of Antarctic Bottom Water flow [J]. Marine Geology, 1988, 81(1-4): 289-314. doi: 10.1016/0025-3227(88)90032-1

    CrossRef Google Scholar

    [15] Carsey F D. Microwave observation of the Weddell Polynya [J]. Monthly Weather Review, 1980, 108(12): 2032-2044. doi: 10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2

    CrossRef Google Scholar

    [16] Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling [J]. Nature Geoscience, 2012, 5(3): 171-180. doi: 10.1038/ngeo1391

    CrossRef Google Scholar

    [17] Marinov I, Gnanadesikan A, Toggweiler J R, et al. The southern ocean biogeochemical divide [J]. Nature, 2006, 441(7096): 964-967. doi: 10.1038/nature04883

    CrossRef Google Scholar

    [18] Orsi A H, Nowlin W D Jr, Whitworth T III. On the circulation and stratification of the Weddell Gyre [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(1): 169-203. doi: 10.1016/0967-0637(93)90060-G

    CrossRef Google Scholar

    [19] Vernet M, Geibert W, Hoppema M, et al. The Weddell Gyre, Southern Ocean: present knowledge and future challenges [J]. Reviews of Geophysics, 2019, 57(3): 623-708. doi: 10.1029/2018RG000604

    CrossRef Google Scholar

    [20] Müller P J, Schneider R. An automated leaching method for the determination of opal in sediments and particulate matter [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(3): 425-444. doi: 10.1016/0967-0637(93)90140-X

    CrossRef Google Scholar

    [21] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    CrossRef Google Scholar

    [22] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.

    Google Scholar

    [23] Lu L J, Zheng X F, Chen Z, et al. One-to-one coupling between southern ocean productivity and Antarctica climate [J]. Geophysical Research Letters, 2022, 49(13): e2022GL098761.

    Google Scholar

    [24] Weber M E, Kuhn G, Sprenk D, et al. Dust transport from Patagonia to Antarctica–a new stratigraphic approach from the Scotia Sea and its implications for the last glacial cycle [J]. Quaternary Science Reviews, 2012, 36: 177-188. doi: 10.1016/j.quascirev.2012.01.016

    CrossRef Google Scholar

    [25] Lambert F, Bigler M, Steffensen J P, et al. The calcium-dust relationship in high-resolution data from Dome C, Antarctica [J]. Climate of the Past Discussions, 2011, 7(2): 1113-1137.

    Google Scholar

    [26] Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise [J]. Science, 2010, 328(5982): 1147-1151. doi: 10.1126/science.1183627

    CrossRef Google Scholar

    [27] Pugh R S, McCave I N, Hillenbrand C D, et al. Circum-Antarctic age modelling of Quaternary marine cores under the Antarctic Circumpolar Current: ice-core dust–magnetic correlation [J]. Earth and Planetary Science Letters, 2009, 284(1-2): 113-123. doi: 10.1016/j.jpgl.2009.04.016

    CrossRef Google Scholar

    [28] Fischer H, Fundel F, Ruth U, et al. Reconstruction of millennial changes in transport, dust emission and regional differences in sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica [J]. Earth and Planetary Science Letters, 2007, 260(1-2): 340-354. doi: 10.1016/j.jpgl.2007.06.014

    CrossRef Google Scholar

    [29] Röthlisberger R, Bigler M, Wolff E W, et al. Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation [J]. Geophysical Research Letters, 2004, 31(16): L16207. doi: 10.1029/2004GL020338

    CrossRef Google Scholar

    [30] Lunt D J, Valdes P J. Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day [J]. Geophysical Research Letters, 2001, 28(2): 295-298. doi: 10.1029/2000GL012170

    CrossRef Google Scholar

    [31] Li F Y, Ginoux P, Ramaswamy V. Transport of Patagonian dust to Antarctica [J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D18): D18217. doi: 10.1029/2009JD012356

    CrossRef Google Scholar

    [32] Barker P F, Kennett J P, Scientific P. Weddell Sea palaeoceanography: preliminary results of ODP leg 113 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 67(1-2): 75-102. doi: 10.1016/0031-0182(88)90123-X

    CrossRef Google Scholar

    [33] Van der Weijden C H. Pitfalls of normalization of marine geochemical data using a common divisor [J]. Marine Geology, 2002, 184(3-4): 167-187. doi: 10.1016/S0025-3227(01)00297-3

    CrossRef Google Scholar

    [34] Wedepohl K H. Environmental influences on the chemical composition of shales and clays [J]. Physics and Chemistry of the Earth, 1971, 8: 307-333. doi: 10.1016/0079-1946(71)90020-6

    CrossRef Google Scholar

    [35] Murray R W, Leinen M, Isern A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods [J]. Paleoceanography, 1993, 8(5): 651-670. doi: 10.1029/93PA02195

    CrossRef Google Scholar

    [36] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0

    CrossRef Google Scholar

    [37] Sayles F L, Martin W R, Chase Z, et al. Benthic remineralization and burial of biogenic SiO2, CaCO3, organic carbon, and detrital material in the Southern Ocean along a transect at 170° West [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2001, 48(19-20): 4323-4383. doi: 10.1016/S0967-0645(01)00091-1

    CrossRef Google Scholar

    [38] Pondaven P, Ragueneau O, Tréguer P, et al. Resolving the ‘opal paradox’ in the Southern Ocean [J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046

    CrossRef Google Scholar

    [39] Martínez-García A, Sigman D M, Ren H J, et al. Iron fertilization of the Subantarctic Ocean during the last ice age [J]. Science, 2014, 343(6177): 1347-1350. doi: 10.1126/science.1246848

    CrossRef Google Scholar

    [40] Weber M E, Bailey I, Hemming S R, et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years [J]. Nature Communications, 2022, 13(1): 2044. doi: 10.1038/s41467-022-29642-5

    CrossRef Google Scholar

    [41] Nürnberg C C, Bohrmann G, Schlüter M, et al. Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190, 000 year records [J]. Paleoceanography, 1997, 12(4): 594-603. doi: 10.1029/97PA01130

    CrossRef Google Scholar

    [42] Kim S, Lee J I, McKay R M, et al. Late pleistocene paleoceanographic changes in the Ross Sea–Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356

    CrossRef Google Scholar

    [43] Kohfeld K E, Quéré C L, Harrison S P, et al. Role of marine biology in glacial-interglacial CO2 cycles [J]. Science, 2005, 308(5718): 74-78. doi: 10.1126/science.1105375

    CrossRef Google Scholar

    [44] Toyos M H, Winckler G, Arz H W, et al. Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr [J]. Climate of the Past, 2022, 18(1): 147-166. doi: 10.5194/cp-18-147-2022

    CrossRef Google Scholar

    [45] Romero O E, Kim J H, Bárcena M A, et al. High-latitude forcing of diatom productivity in the southern Agulhas Plateau during the past 350 kyr [J]. Paleoceanography, 2015, 30(2): 118-132. doi: 10.1002/2014PA002636

    CrossRef Google Scholar

    [46] Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the Southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception [J]. Climate of the Past, 2022, 18(8): 1797-1813. doi: 10.5194/cp-18-1797-2022

    CrossRef Google Scholar

    [47] Anderson R F, Barker S, Fleisher M, et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130054. doi: 10.1098/rsta.2013.0054

    CrossRef Google Scholar

    [48] Trull T W, Bray S G, Manganini S J, et al. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia [J]. Journal of Geophysical Research:Oceans, 2001, 106(C12): 31489-31509. doi: 10.1029/2000JC000308

    CrossRef Google Scholar

    [49] Boyd P W, Jickells T, Law C S, et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions [J]. Science, 2007, 315(5812): 612-617. doi: 10.1126/science.1131669

    CrossRef Google Scholar

    [50] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    CrossRef Google Scholar

    [51] Petrou K, Kranz S A, Trimborn S, et al. Southern Ocean phytoplankton physiology in a changing climate [J]. Journal of Plant Physiology, 2016, 203: 135-150. doi: 10.1016/j.jplph.2016.05.004

    CrossRef Google Scholar

    [52] Chadwick M, Crosta X, Esper O, et al. Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12-130 ka) [J]. Climate of the Past, 2022, 18(8): 1815-1829. doi: 10.5194/cp-18-1815-2022

    CrossRef Google Scholar

    [53] Gran H H. On the conditions for the production of plankton in the sea [J]. Rapp. proc. verb. reun. cons. int. explor. Mer, 1931, 75: 37-46.

    Google Scholar

    [54] Martin J H, Gordon M, Fitzwater S E. The case for iron [J]. Limnology and Oceanography, 1991, 36(8): 1793-1802. doi: 10.4319/lo.1991.36.8.1793

    CrossRef Google Scholar

    [55] Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310

    CrossRef Google Scholar

    [56] Toggweiler J R, Samuels B. Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds?[M]//Heimann M. The Global Carbon Cycle. Berlin, Heidelberg: Springer, 1993: 303-331.

    Google Scholar

    [57] Wu S Z, Lembke-Jene L, Lamy F, et al. Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the past 140, 000 years [J]. Nature Communications, 2021, 12(1): 3948. doi: 10.1038/s41467-021-24264-9

    CrossRef Google Scholar

    [58] Wolff E W, Barbante C, Becagli S, et al. Changes in environment over the last 800, 000 years from chemical analysis of the EPICA Dome C ice core [J]. Quaternary Science Reviews, 2010, 29(1-2): 285-295. doi: 10.1016/j.quascirev.2009.06.013

    CrossRef Google Scholar

    [59] Lange M A, Ackley S F, Wadhams P, et al. Development of sea ice in the Weddell Sea [J]. Annals of Glaciology, 1989, 12: 92-96. doi: 10.3189/S0260305500007023

    CrossRef Google Scholar

    [60] Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends [J]. Nature, 2016, 537(7618): 89-92. doi: 10.1038/nature19101

    CrossRef Google Scholar

    [61] Garibotti I A, Vernet M, Ferrario M E, et al. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean) [J]. Marine Ecology Progress Series, 2003, 261: 21-39. doi: 10.3354/meps261021

    CrossRef Google Scholar

    [62] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    CrossRef Google Scholar

    [63] Ullermann J, Lamy F, Ninnemann U, et al. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500 ka [J]. Paleoceanography, 2016, 31(6): 639-650. doi: 10.1002/2016PA002932

    CrossRef Google Scholar

    [64] Hodell D A, Venz K A, Charles C D, et al. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(1): 1-19.

    Google Scholar

    [65] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957

    CrossRef Google Scholar

    [66] Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration [J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1461) PDF downloads(72) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint