2023 Vol. 43, No. 3
Article Contents

LI Jianping, XU Wei, YAN Zhuoyu, ZHANG Cheng, XIONG Lianqiao. Controlling factors on the effectiveness of turbidite fan reservoir of the Meishan Formation, Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 157-166. doi: 10.16562/j.cnki.0256-1492.2022090602
Citation: LI Jianping, XU Wei, YAN Zhuoyu, ZHANG Cheng, XIONG Lianqiao. Controlling factors on the effectiveness of turbidite fan reservoir of the Meishan Formation, Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 157-166. doi: 10.16562/j.cnki.0256-1492.2022090602

Controlling factors on the effectiveness of turbidite fan reservoir of the Meishan Formation, Qiongdongnan Basin

  • The turbidite fan of Miocene Meishan Formation in Qiongdongnan Basin is one of the main contributors of natural gas in the area. To increase the natural gas reserve and production in this area, the sedimentary mechanism, the controlling factors and prediction methods were studied. According to a large number of DST, geological fluid sampling, core and rotary sidewall coring measured data, and relevant enterprise standards, the turbidite fan reservoir of the could be divided into four levels of grade: high-quality, good, effective, and tight. The four levels correspond to high production, commercial production capacity, merely productive capacity, and dry layer. Results show that the type of turbidite fans and its internal composition, bottom current reformation, and reservoir effectiveness are key factors on reservoir prediction success. Fault-terrace basin floor fans, basin floor fans cut by canyon, and integral basin floor fans are three types of relatively good reservoirs; and bottom current reworking is important to improve the reservoir of middle fan and outer fan in open flow environment. For the basin floor fan cut by canyon, the lithological side seal needs to be focused in the future. For the integral basin floor fans, the reservoir pinch out shall be considered too. At present, the rate of reservoir prediction of the Meishan turbidite fans in this area is very low. The methods developed in this study shall be of great value to improve the success rate of reservoir prediction.

  • 加载中
  • [1] 王振峰. 深水重要油气储层: 琼东南盆地中央峡谷体系[J]. 沉积学报, 2012, 30(4):646-653

    Google Scholar

    WANG Zhenfeng. Important deepwater hydrocarbon reservoirs: the central canyon system in the Qiongdongnan Basin [J]. Acta Sedimentologica Sinica, 2012, 30(4): 646-653.

    Google Scholar

    [2] 解习农, 陈志宏, 孙志鹏, 等. 南海西北陆缘深水沉积体系内部构成特征[J]. 地球科学:中国地质大学学报, 2012, 37(4):627-634

    Google Scholar

    XIE Xinong, CHEN Zhihong, SUN Zhipeng, et al. Depositional architecture characteristics of deepwater depositional systems on the continental margins of northwestern South China Sea [J]. Earth Science:Journal of China University of Geosciences, 2012, 37(4): 627-634.

    Google Scholar

    [3] 李建平, 廖计华, 方勇. 基于露头和岩心的深水重力流沉积新认识及其油气地质意义[J]. 油气地质与采收率, 2020, 27(6):30-37

    Google Scholar

    LI Jianping, LIAO Jihua, FANG Yong. New understanding of deep-water gravity flow deposition and its significance in petroleum geology based on outcrops and cores [J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 30-37.

    Google Scholar

    [4] 魏魁生, 崔旱云, 叶淑芬, 等. 琼东南盆地高精度层序地层学研究[J]. 地球科学:中国地质大学学报, 2001, 26(1):59-66

    Google Scholar

    WEI Kuisheng, CUI Hanyun, YE Shufen, et al. High-precision sequence stratigraphy in Qiongdongnan Basin [J]. Earth Science:Journal of China University of Geosciences, 2001, 26(1): 59-66.

    Google Scholar

    [5] Xie X N, Müller R D, Ren J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea [J]. Marine Geology, 2008, 247(3-4): 129-144. doi: 10.1016/j.margeo.2007.08.005

    CrossRef Google Scholar

    [6] 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5):922-930

    Google Scholar

    WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea [J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930.

    Google Scholar

    [7] 雷超, 任建业, 李绪深, 等. 琼东南盆地深水区结构构造特征与油气勘探潜力[J]. 石油勘探与开发, 2011, 38(5):560-569

    Google Scholar

    LEI Chao, REN Jianye, LI Xushen, et al. Structural characteristics and petroleum exploration potential in the deep-water area of the Qiongdongnan Basin, South China Sea [J]. Petroleum Exploration and Development, 2011, 38(5): 560-569.

    Google Scholar

    [8] 何云龙, 解习农, 陆永潮, 等. 琼东南盆地深水块体流构成及其沉积特征[J]. 地球科学:中国地质大学学报, 2011, 36(5):905-913

    Google Scholar

    HE Yunlong, XIE Xinong, LU Yongchao, et al. Architecture and characteristics of mass transport deposits (MTDs) in Qiongdongnan Basin in northern South China Sea [J]. Earth Science:Journal of China University of Geosciences, 2011, 36(5): 905-913.

    Google Scholar

    [9] Shanmugam G. Submarine fans: a critical retrospective (1950-2015) [J]. Journal of Palaeogeography, 2016, 5(2): 110-184. doi: 10.1016/j.jop.2015.08.011

    CrossRef Google Scholar

    [10] Posamentier H W, Kolla V, 刘化清. 深水浊流沉积综述[J]. 沉积学报, 2019, 37(5):879-903

    Google Scholar

    Posamentier H W, Kolla V, LIU Huaqing. An overview of deep-water turbidite deposition [J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903.

    Google Scholar

    [11] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2):124-136

    Google Scholar

    FU Hanpu, LIU Qun, HU Xiumian. Review on subaqueous sediment gravity flow and submarine fan [J]. Advances in Earth Science, 2020, 35(2): 124-136.

    Google Scholar

    [12] Chen H, Stow D A V, Xie X N, et al. Depositional architecture and evolution of basin-floor fan systems since the Late Miocene in the Northwest Sub-Basin, South China Sea [J]. Marine and Petroleum Geology, 2021, 126: 104803. doi: 10.1016/j.marpetgeo.2020.104803

    CrossRef Google Scholar

    [13] 李建平, 刘子玉, 谢晓军, 等. 深水重力流沉积机理新认识及其在北海G油田发现中的应用[J]. 中国海上油气, 2021, 33(1):23-31

    Google Scholar

    LI Jianping, LIU Ziyu, XIE Xiaojun, et al. New understanding of deep-water gravity flow deposition mechanism and its application in the discovery of G oilfield in North Sea [J]. China Offshore Oil and Gas, 2021, 33(1): 23-31.

    Google Scholar

    [14] Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system [J]. AAPG Bulletin, 1994, 78(5): 792-822.

    Google Scholar

    [15] Scott R A, Smyth H R, Moton A C, 等. 油气勘探开发中的沉积物源研究[M]. 李胜利, 李顺利, 单新, 等译. 北京: 石油工业出版社, 2018: 1-472

    Google Scholar

    Scott R A, Smyth H R, Moton A C, 等. 油气勘探开发中的沉积物源研究[M]. 李胜利, 李顺利, 单新, 等译. 北京: 石油工业出版社, 2018: 1-472. [Scott R A, Smyth H R, Moton A C, et al. Sediment Provenance Studies in Hydrocarbon Exploration and Production[M]. LI Shengli, LI Shunli, SHAN Xin, et al, trans. Beijing: Petroleum Industry Press, 2018: 1-472.

    Google Scholar

    [16] Shanmugam G. Deep-Water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs[M]. Amsterdam: Elsevier, 2006: 1-474.

    Google Scholar

    [17] Chen H, Xie X N, Mao K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea margin [J]. Journal of Earth Science, 2020, 31(4): 808-819. doi: 10.1007/s12583-020-1284-z

    CrossRef Google Scholar

    [18] Purvis K, Kao J, Flanagan K, et al. Complex reservoir geometries in a deep water clastic sequence, Gryphon Field, UKCS: injection structures, geological modelling and reservoir simulation [J]. Marine and Petroleum Geology, 2002, 19(2): 161-179. doi: 10.1016/S0264-8172(02)00003-X

    CrossRef Google Scholar

    [19] Mayall M, Jones E, Casey M. Turbidite channel reservoirs – Key elements in facies prediction and effective development [J]. Marine and Petroleum Geology, 2006, 23(8): 821-841. doi: 10.1016/j.marpetgeo.2006.08.001

    CrossRef Google Scholar

    [20] 王英民, 王海荣, 邱燕, 等. 深水沉积的动力学机制和响应[J]. 沉积学报, 2007, 25(4):495-504

    Google Scholar

    WANG Yingmin, WANG Hairong, QIU Yan, et al. Process of dynamics and its response of deep-water sedimentation [J]. Acta Sedimentologica Sinica, 2007, 25(4): 495-504.

    Google Scholar

    [21] Brackenridge R E, Hernández-Molina F J, Stow D A V, et al. A Pliocene mixed contourite-turbidite system offshore the Algarve Margin, Gulf of Cadiz: seismic response, margin evolution and reservoir implications [J]. Marine and Petroleum Geology, 2013, 46: 36-50. doi: 10.1016/j.marpetgeo.2013.05.015

    CrossRef Google Scholar

    [22] Alonso B, Ercilla G, Casas D, et al. Contourite vs gravity-flow deposits of the Pleistocene Faro Drift (Gulf of Cadiz): sedimentological and mineralogical approaches [J]. Marine Geology, 2016, 377: 77-94. doi: 10.1016/j.margeo.2015.12.016

    CrossRef Google Scholar

    [23] 苏明, 李俊良, 姜涛, 等. 琼东南盆地中央峡谷的形态及成因[J]. 海洋地质与第四纪地质, 2009, 29(4):85-93

    Google Scholar

    SU Ming, LI Junliang, JIANG Tao, et al. Morphological features and formation mechanism of central canyon in the Qiongdongnan Basin, northern South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(4): 85-93.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(969) PDF downloads(43) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint