2022 Vol. 42, No. 3
Article Contents

ZHANG Qinyi, WU Daidai, LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 62-75. doi: 10.16562/j.cnki.0256-1492.2022112201
Citation: ZHANG Qinyi, WU Daidai, LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 62-75. doi: 10.16562/j.cnki.0256-1492.2022112201

Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment

More Information
  • Organoclastic sulfate reduction (OSR) exists extensively within normal marine sediments, whereas, sulfate reduction coupled with anaerobic oxidation of methane (SR-AOM) are dominated process in the cold-seep areas. How to distinguish these two sulfate reduction pathways is of great significance to the study of biogeochemical processes in extreme environments. Here, in order to further understand the characteristics of multiple sulfur isotopes of authigenic minerals associated with SR-AOM in the cold seep and their modeling applications, this study conducts extensive investigations into the research results of multiple sulfur isotopes related to SR-AOM at home and abroad, mainly focusing on the multiple sulfur isotopic characteristics of pyrite and barite of SR-AOM. Based on this, the widely used steady-state box model and 1-D diagenetic reaction-transport model are proposed for pyrite and barite respectively. The pyrite of SR-AOM origin has higher δ34S and Δ33S values than that of OSR. The δ34S and Δ33S values of pyrite formed by SR-AOM shows a negative correlation, which is different from that of OSR. The negative Δ33S-δ´34S correlation of barite significantly different from that of OSR-induced pore water sulfate reveals a positive correlation. The multiple sulfur isotopic characteristics of authigenic minerals related to SR-AOM in the cold seep can effectively trace the evolution of sulfur isotopes and assist to distinguish SR-AOM from OSR. This provides an effective basis for further research on biogeochemical processes in extreme environments and for tracing potential gas hydrate deposits.

  • 加载中
  • [1] Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2005, 75(1-4): 59-83.

    Google Scholar

    [2] Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates [J]. Reviews of Geophysics, 2017, 55(1): 126-168. doi: 10.1002/2016RG000534

    CrossRef Google Scholar

    [3] Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment [J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 299-327. doi: 10.1146/annurev.ea.11.050183.001503

    CrossRef Google Scholar

    [4] Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change [J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    CrossRef Google Scholar

    [5] Johnson J E, Goldfinger C, Suess E. Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin [J]. Marine Geology, 2003, 202(1-2): 79-120. doi: 10.1016/S0025-3227(03)00268-8

    CrossRef Google Scholar

    [6] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018

    CrossRef Google Scholar

    [7] Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601. doi: 10.1073/pnas.0800885105

    CrossRef Google Scholar

    [8] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    CrossRef Google Scholar

    [9] 叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学-中国地质大学学报, 2013, 38(6):1299-1308 doi: 10.3799/dqkx.2013.127

    CrossRef Google Scholar

    YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the Northern South China Sea since the Late Younger Dryas [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127

    CrossRef Google Scholar

    [10] Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    CrossRef Google Scholar

    [11] Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2767-2779. doi: 10.1016/j.gca.2005.01.002

    CrossRef Google Scholar

    [12] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [13] Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. 2nd ed. Berlin, Heidelberg: Springer, 2006: 271-309.

    Google Scholar

    [14] Liu J R, Pellerin A, Izon G, et al. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron [J]. Earth and Planetary Science Letters, 2020, 536: 116165. doi: 10.1016/j.jpgl.2020.116165

    CrossRef Google Scholar

    [15] Jørgensen B B, Nelson D C. Sulfide oxidation in marine sediments: Geochemistry meets microbiology[M]//Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry - Past and Present. Special Paper of the Geological Society of America, Boulder, Colorado, 2004: 63-81.

    Google Scholar

    [16] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    CrossRef Google Scholar

    [17] Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea [J]. Geochimica et Cosmochimica Acta, 2017, 211: 153-173. doi: 10.1016/j.gca.2017.05.015

    CrossRef Google Scholar

    [18] 邬黛黛, 吴能友, 张美, 等. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学-中国地质大学学报, 2013, 38(6):1309-1320 doi: 10.3799/dqkx.2013.128

    CrossRef Google Scholar

    WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128

    CrossRef Google Scholar

    [19] McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia [J]. Nature, 2015, 526(7574): 531-535. doi: 10.1038/nature15512

    CrossRef Google Scholar

    [20] Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria [J]. Nature, 2015, 526(7574): 587-590. doi: 10.1038/nature15733

    CrossRef Google Scholar

    [21] Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation [J]. Nature, 2012, 491(7425): 541-546. doi: 10.1038/nature11656

    CrossRef Google Scholar

    [22] Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351(6274): 703-707. doi: 10.1126/science.aad7154

    CrossRef Google Scholar

    [23] Crémière A, Pellerin A, Wing B A, et al. Multiple sulfur isotopes in methane seep carbonates track unsteady sulfur cycling during anaerobic methane oxidation [J]. Earth and Planetary Science Letters, 2020, 532: 115994. doi: 10.1016/j.jpgl.2019.115994

    CrossRef Google Scholar

    [24] Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017

    CrossRef Google Scholar

    [25] Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9

    CrossRef Google Scholar

    [26] Böttcher M E, Boetius A, Rickert D. Sulfur isotope fractionation during microbial sulfate reduction associated with anaerobic methane oxidation[Z]. TERRA NOSTRA, 2003, 3, 89.

    Google Scholar

    [27] Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog [J]. Geology, 2010, 38(5): 415-418. doi: 10.1130/G30723.1

    CrossRef Google Scholar

    [28] Jørgensen B B, Findlay A J, Pellerin A. The biogeochemical sulfur cycle of marine sediments [J]. Frontiers in Microbiology, 2019, 10: 849. doi: 10.3389/fmicb.2019.00849

    CrossRef Google Scholar

    [29] Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species [J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4

    CrossRef Google Scholar

    [30] Miao X M, Feng X L, Liu X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite [J]. Marine and Petroleum Geology, 2021, 133: 105231. doi: 10.1016/j.marpetgeo.2021.105231

    CrossRef Google Scholar

    [31] Raven M R, Sessions A L, Fischer W W, et al. Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur [J]. Geochimica et Cosmochimica Acta, 2016, 186: 120-134. doi: 10.1016/j.gca.2016.04.037

    CrossRef Google Scholar

    [32] Akam S A, Lyons T W, Coffin R B, et al. Carbon-sulfur signals of methane versus crude oil diagenetic decomposition and U-Th age relationships for authigenic carbonates from asphalt seeps, southern Gulf of Mexico [J]. Chemical Geology, 2021, 581: 120395. doi: 10.1016/j.chemgeo.2021.120395

    CrossRef Google Scholar

    [33] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    CrossRef Google Scholar

    [34] Pierre C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin [J]. Chemical Geology, 2017, 449: 158-164. doi: 10.1016/j.chemgeo.2016.11.005

    CrossRef Google Scholar

    [35] Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment [J]. Marine Geology, 2018, 403: 271-284. doi: 10.1016/j.margeo.2018.06.010

    CrossRef Google Scholar

    [36] Liu J R, Pellerin A, Wang J S, et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation [J]. Geochimica et Cosmochimica Acta, 2022, 316: 309-330. doi: 10.1016/j.gca.2021.09.026

    CrossRef Google Scholar

    [37] 冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056

    Google Scholar

    FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056.

    Google Scholar

    [38] Johnston D T. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle [J]. Earth-Science Reviews, 2011, 106(1-2): 161-183. doi: 10.1016/j.earscirev.2011.02.003

    CrossRef Google Scholar

    [39] Ono S, Wing B, Johnston D, et al. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles [J]. Geochimica Et Cosmochimica Acta, 2006, 70(9): 2238-2252. doi: 10.1016/j.gca.2006.01.022

    CrossRef Google Scholar

    [40] Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle [J]. Earth and Planetary Science Letters, 2014, 396: 14-21. doi: 10.1016/j.jpgl.2014.03.057

    CrossRef Google Scholar

    [41] Farquhar J, Johnston D T, Wing B A, et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record [J]. Geobiology, 2003, 1(1): 27-36. doi: 10.1046/j.1472-4669.2003.00007.x

    CrossRef Google Scholar

    [42] Hulston J R, Thode H G. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects [J]. Journal of Geophysical Research, 1965, 70(14): 3475-3484. doi: 10.1029/JZ070i014p03475

    CrossRef Google Scholar

    [43] Young E D, Galy A, Nagahara H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance [J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1095-1104. doi: 10.1016/S0016-7037(01)00832-8

    CrossRef Google Scholar

    [44] Rudnicki M D, Elderfield H, Spiro B. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 777-789. doi: 10.1016/S0016-7037(00)00579-2

    CrossRef Google Scholar

    [45] Wortmann U G, Bernasconi S M, Böttcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction [J]. Geology, 2001, 29(7): 647-650. doi: 10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2

    CrossRef Google Scholar

    [46] Farquhar J, Johnston D T, Wing B A. Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction [J]. Geochimica et Cosmochimica Acta, 2007, 71(24): 5862-5875. doi: 10.1016/j.gca.2007.08.028

    CrossRef Google Scholar

    [47] Antler G, Turchyn A V, Ono S, et al. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction [J]. Geochimica et Cosmochimica Acta, 2017, 203: 364-380. doi: 10.1016/j.gca.2017.01.015

    CrossRef Google Scholar

    [48] Knittel K, Wegener G, Boetius A. Anaerobic methane oxidizers[M]//McGenity T J. Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Springer International Publishing, 2018: 1-21.

    Google Scholar

    [49] Canfield D E. Biogeochemistry of sulfur isotopes [J]. Reviews in Mineralogy & Geochemistry, 2001, 43(1): 607-636.

    Google Scholar

    [50] Pellerin A, Antler G, Holm S A, et al. Large sulfur isotope fractionation by bacterial sulfide oxidation [J]. Science Advances, 2019, 5(7): eaaw1480. doi: 10.1126/sciadv.aaw1480

    CrossRef Google Scholar

    [51] Fry B, Cox J, Gest H, et al. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds [J]. Journal of Bacteriology, 1986, 165(1): 328-330. doi: 10.1128/jb.165.1.328-330.1986

    CrossRef Google Scholar

    [52] Habicht K S, Canfield D E, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite [J]. Geochimica et Cosmochimica Acta, 1998, 62(15): 2585-2595. doi: 10.1016/S0016-7037(98)00167-7

    CrossRef Google Scholar

    [53] Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps [J]. Chemical Geology, 2003, 205(3-4): 443-467.

    Google Scholar

    [54] Finster K. Microbiological disproportionation of inorganic sulfur compounds [J]. Journal of Sulfur Chemistry, 2008, 29(3-4): 281-292. doi: 10.1080/17415990802105770

    CrossRef Google Scholar

    [55] Turchyn A V, Brrchert V, Lyons T W, et al. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2011-2024. doi: 10.1016/j.gca.2010.01.004

    CrossRef Google Scholar

    [56] Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.

    Google Scholar

    [57] Peketi A, Mazumdar A, Joao H M, et al. Coupled C–S–Fe geochemistry in a rapidly accumulating marine sedimentary system: Diagenetic and depositional implications [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 2865-2883. doi: 10.1002/2015GC005754

    CrossRef Google Scholar

    [58] Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001

    CrossRef Google Scholar

    [59] Lin Q, Wang J S, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea [J]. Marine Geology, 2016, 379: 100-108. doi: 10.1016/j.margeo.2016.05.016

    CrossRef Google Scholar

    [60] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea [J]. Chemical Geology, 2016, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007

    CrossRef Google Scholar

    [61] Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea [J]. Journal of Asian Earth Sciences, 2016, 123: 213-223. doi: 10.1016/j.jseaes.2016.04.007

    CrossRef Google Scholar

    [62] Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1

    CrossRef Google Scholar

    [63] Goldhaber M B, Kaplan I R. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California [J]. Marine Chemistry, 1980, 9(2): 95-143. doi: 10.1016/0304-4203(80)90063-8

    CrossRef Google Scholar

    [64] Jørgensen B B. A theoretical model of the stable sulfur isotope distribution in marine sediments [J]. Geochimica et Cosmochimica Acta, 1979, 43(3): 363-374. doi: 10.1016/0016-7037(79)90201-1

    CrossRef Google Scholar

    [65] Masterson A L. Multiple sulfur isotope applications in diagenetic models and geochemical proxy records[D]. Doctoral Dissertation of Harvard University, Graduate School of Arts & Sciences, 2016.

    Google Scholar

    [66] Gong S G, Peng Y B, Bao H M, et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane [J]. Earth and Planetary Science Letters, 2018, 504: 13-20. doi: 10.1016/j.jpgl.2018.09.036

    CrossRef Google Scholar

    [67] Neretin L N, Böttcher M E, Jørgensen B B, et al. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093. doi: 10.1016/S0016-7037(03)00450-2

    CrossRef Google Scholar

    [68] Turchyn A V, Antler G, Byrne D, et al. Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385 [J]. Global and Planetary Change, 2016, 141: 82-90. doi: 10.1016/j.gloplacha.2016.03.004

    CrossRef Google Scholar

    [69] Teichert B M A, Chevalier N, Gussone N, et al. Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 153: 79-91. doi: 10.1016/j.dsr2.2017.11.014

    CrossRef Google Scholar

    [70] 常鑫, 张明宇, 谷玉, 等. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12):1306-1320 doi: 10.11867/j.issn.1001-8166.2020.105

    CrossRef Google Scholar

    CHANG Xin, ZHANG Mingyu, GU Yu, et al. Formation mechanism and controlling factors of authigenic pyrite in mud sediments on the shelf of the Yellow Sea and the East China Sea [J]. Advances in Earth Science, 2020, 35(12): 1306-1320. doi: 10.11867/j.issn.1001-8166.2020.105

    CrossRef Google Scholar

    [71] Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 89-99.

    Google Scholar

    [72] Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1531): 25-38. doi: 10.1098/rsta.1985.0027

    CrossRef Google Scholar

    [73] Gong S G, Hu Y, Li N, et al. Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 96-105. doi: 10.1016/j.jseaes.2018.04.037

    CrossRef Google Scholar

    [74] Formolo M J, Lyons T W. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2013, 119: 264-285. doi: 10.1016/j.gca.2013.05.017

    CrossRef Google Scholar

    [75] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8

    CrossRef Google Scholar

    [76] 张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6):178-188

    Google Scholar

    ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.

    Google Scholar

    [77] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6

    CrossRef Google Scholar

    [78] Pellerin A, Antler G, Røy H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2018, 239: 74-89. doi: 10.1016/j.gca.2018.07.027

    CrossRef Google Scholar

    [79] 康绪明, 古丽, 刘素美. 春季黄渤海沉积物中酸可挥发性硫与黄铁矿的分布特征及影响因素[J]. 海洋环境科学, 2014, 33(1):1-7

    Google Scholar

    KANG Xuming, GU Li, LIU Sumei. Distributions and influence factors of Acid Volatile Sulfide and pyrite in the Bohai Sea and Yellow Sea in spring [J]. Marine Environmental Science, 2014, 33(1): 1-7.

    Google Scholar

    [80] Rickard D, Luther G W. Chemistry of iron sulfides [J]. Chemical Reviews, 2007, 107(2): 514-562. doi: 10.1021/cr0503658

    CrossRef Google Scholar

    [81] Shawar L, Halevy I, Said-Ahmad W, et al. Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments [J]. Geochimica et Cosmochimica Acta, 2018, 241: 219-239. doi: 10.1016/j.gca.2018.08.048

    CrossRef Google Scholar

    [82] Price F T, Shieh Y N. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures [J]. Chemical Geology, 1979, 27(3): 245-253. doi: 10.1016/0009-2541(79)90042-1

    CrossRef Google Scholar

    [83] Butler I B, Böttcher M E, Rickard D, et al. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records [J]. Earth and Planetary Science Letters, 2004, 228(3-4): 495-509. doi: 10.1016/j.jpgl.2004.10.005

    CrossRef Google Scholar

    [84] Chen T T, Sun X M, Lin Z Y, et al. Deciphering the geochemical link between seep carbonates and enclosed pyrite: A case study from the northern South China sea [J]. Marine and Petroleum Geology, 2021, 128: 105020. doi: 10.1016/j.marpetgeo.2021.105020

    CrossRef Google Scholar

    [85] 李鑫, 曹红, 耿威, 等. 碳酸盐晶格硫研究进展[J]. 海洋地质与第四纪地质, 2020, 40(3):119-131

    Google Scholar

    LI Xin, CAO Hong, GENG Wei, et al. Research progress in carbonate associated sulfate [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 119-131.

    Google Scholar

    [86] Deusner C, Holler T, Arnold G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters, 2014, 399: 61-73. doi: 10.1016/j.jpgl.2014.04.047

    CrossRef Google Scholar

    [87] Liu X T, Li A C, Fike D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation [J]. Marine Geology, 2020, 429: 106307. doi: 10.1016/j.margeo.2020.106307

    CrossRef Google Scholar

    [88] Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur [J]. Science, 1994, 266(5193): 1973-1975. doi: 10.1126/science.11540246

    CrossRef Google Scholar

    [89] Peckmann J, Goedert J L, Heinrichs T, et al. The Late Eocene 'Whiskey Creek' methane-seep deposit (western Washington State) [J]. Facies, 2003, 48(1): 241-253. doi: 10.1007/BF02667542

    CrossRef Google Scholar

    [90] Lichtschlag A, Kamyshny A, Ferdelman T G, et al. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea) [J]. Geochimica et Cosmochimica Acta, 2013, 105: 130-145. doi: 10.1016/j.gca.2012.11.025

    CrossRef Google Scholar

    [91] Pellerin A, Bui T H, Rough M, et al. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: A case study from Mangrove Lake, Bermuda [J]. Geochimica et Cosmochimica Acta, 2015, 149: 152-164. doi: 10.1016/j.gca.2014.11.007

    CrossRef Google Scholar

    [92] Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the mesoproterozoic [J]. Science, 2005, 310(5753): 1477-1479. doi: 10.1126/science.1117824

    CrossRef Google Scholar

    [93] Johnston D T, Farquhar J, Wing B A, et al. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators [J]. American Journal of Science, 2005, 305(6-8): 645-660. doi: 10.2475/ajs.305.6-8.645

    CrossRef Google Scholar

    [94] Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica Et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6

    CrossRef Google Scholar

    [95] Weber H S, Thamdrup B, Habicht K S. High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low-sulfate, iron-rich environment [J]. Frontiers in Earth Science, 2016, 4: 61.

    Google Scholar

    [96] Masterson A, Alperin M J, Berelson W M, et al. Interpreting multiple sulfur isotope signals in modern anoxic sediments using a full diagenetic model (California-Mexico margin: Alfonso Basin) [J]. American Journal of Science, 2018, 318(5): 459-490. doi: 10.2475/05.2018.02

    CrossRef Google Scholar

    [97] Ono S, Keller N S, Rouxel O, et al. Sulfur-33 constraints on the origin of secondary pyrite in altered oceanic basement [J]. Geochimica et Cosmochimica Acta, 2012, 87: 323-340. doi: 10.1016/j.gca.2012.04.016

    CrossRef Google Scholar

    [98] Pasquier V, Fike D A, Halevy I. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone [J]. Nature Communications, 2021, 12(1): 4403. doi: 10.1038/s41467-021-24753-x

    CrossRef Google Scholar

    [99] Zhang M, Lu H F, Guan H X, et al. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea [J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1

    CrossRef Google Scholar

    [100] Strauss H, Bast R, Cording A, et al. Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes [J]. Isotopes in Environmental and Health Studies, 2012, 48(1): 166-179. doi: 10.1080/10256016.2012.648930

    CrossRef Google Scholar

    [101] Sim M S, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation [J]. Science, 2011, 333(6038): 74-77. doi: 10.1126/science.1205103

    CrossRef Google Scholar

    [102] Böttcher M E, Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1573-1581. doi: 10.1016/S0016-7037(00)00622-0

    CrossRef Google Scholar

    [103] Johnston D T, Gill B C, Masterson A, et al. Placing an upper limit on cryptic marine sulphur cycling [J]. Nature, 2014, 513(7519): 530-533. doi: 10.1038/nature13698

    CrossRef Google Scholar

    [104] Mills J V, Antler G, Turchyn A V. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments [J]. Earth and Planetary Science Letters, 2016, 453: 23-32. doi: 10.1016/j.jpgl.2016.08.001

    CrossRef Google Scholar

    [105] Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes [J]. Chemical Geology, 2004, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032

    CrossRef Google Scholar

    [106] Riedinger N, Brunner B, Krastel S, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The argentine continental margin [J]. Frontiers in Earth Science, 2017, 5: 33. doi: 10.3389/feart.2017.00033

    CrossRef Google Scholar

    [107] Lonsdale P. A deep-sea hydrothermal site on a strike-slip fault [J]. Nature, 1979, 281(5732): 531-534. doi: 10.1038/281531a0

    CrossRef Google Scholar

    [108] Suess E, Bohrmann G, von Huene R, et al. Fluid venting in the eastern Aleutian subduction zone [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B2): 2597-2614. doi: 10.1029/97JB02131

    CrossRef Google Scholar

    [109] Castellini D G, Dickens G R, Snyder G T, et al. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico [J]. Chemical Geology, 2006, 226(1-2): 1-30. doi: 10.1016/j.chemgeo.2005.08.008

    CrossRef Google Scholar

    [110] Joye S B, MacDonald I R, Montoya J P, et al. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines [J]. Biogeosciences, 2005, 2(3): 295-309. doi: 10.5194/bg-2-295-2005

    CrossRef Google Scholar

    [111] Aquilina L, Dia A N, Boulègue J, et al. Massive barite deposits in the convergent margin off Peru: implications for fluid circulation within subduction zones [J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1233-1245. doi: 10.1016/S0016-7037(96)00402-4

    CrossRef Google Scholar

    [112] Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites [J]. Earth and Planetary Science Letters, 2002, 203(1): 165-180. doi: 10.1016/S0012-821X(02)00830-0

    CrossRef Google Scholar

    [113] Snyder G T, Dickens G R, Castellini D G. Labile barite contents and dissolved barium concentrations on Blake Ridge: new perspectives on barium cycling above gas hydrate systems [J]. Journal of Geochemical Exploration, 2007, 95(1-3): 48-65. doi: 10.1016/j.gexplo.2007.06.001

    CrossRef Google Scholar

    [114] Hein J R, Zierenberg R A, Maynard J B, et al. Barite-forming environments along a rifted continental margin, Southern California Borderland [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1327-1349. doi: 10.1016/j.dsr2.2007.04.011

    CrossRef Google Scholar

    [115] Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9

    CrossRef Google Scholar

    [116] Antler G, Turchyn A V, Herut B, et al. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments [J]. Estuarine, Coastal and Shelf Science, 2014, 142: 4-11. doi: 10.1016/j.ecss.2014.03.001

    CrossRef Google Scholar

    [117] Kunzmann M, Bui T H, Crockford P W, et al. Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation [J]. Geology, 2017, 45(3): 207-210. doi: 10.1130/G38602.1

    CrossRef Google Scholar

    [118] Leavitt W D, Halevy I, Bradley A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11244-11249. doi: 10.1073/pnas.1218874110

    CrossRef Google Scholar

    [119] Sim M S, Ono S, Donovan K, et al. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4244-4259. doi: 10.1016/j.gca.2011.05.021

    CrossRef Google Scholar

    [120] Haeckel M, Boudreau B P, Wallmann K. Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation [J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5135-5154. doi: 10.1016/j.gca.2007.08.011

    CrossRef Google Scholar

    [121] Druhan J L, Maher K. The influence of mixing on stable isotope ratios in porous media: A revised Rayleigh model [J]. Water Resources Research, 2017, 53(2): 1101-1124. doi: 10.1002/2016WR019666

    CrossRef Google Scholar

    [122] Wing B A, Halevy I. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18116-18125. doi: 10.1073/pnas.1407502111

    CrossRef Google Scholar

    [123] Wortmann U G, Chernyavsky B M. The significance of isotope specific diffusion coefficients for reaction-transport models of sulfate reduction in marine sediments [J]. Geochimica Et Cosmochimica Acta, 2011, 75(11): 3046-3056. doi: 10.1016/j.gca.2011.03.007

    CrossRef Google Scholar

    [124] Berner R A. An idealized model of dissolved sulfate distribution in recent sediments [J]. Geochimica et Cosmochimica Acta, 1964, 28(9): 1497-1503. doi: 10.1016/0016-7037(64)90164-4

    CrossRef Google Scholar

    [125] Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671-4692. doi: 10.1016/j.gca.2010.05.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(2600) PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint