2022 Vol. 42, No. 3
Article Contents

XU Xiaoqing, CHEN Ye, ZHEN Yu, MI Tiezhu, LI Jing, LIU Changling. Methanogenic pathways and methanogen communities in the sediments from Bohai Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 50-61. doi: 10.16562/j.cnki.0256-1492.2021101901
Citation: XU Xiaoqing, CHEN Ye, ZHEN Yu, MI Tiezhu, LI Jing, LIU Changling. Methanogenic pathways and methanogen communities in the sediments from Bohai Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 50-61. doi: 10.16562/j.cnki.0256-1492.2021101901

Methanogenic pathways and methanogen communities in the sediments from Bohai Sea

More Information
  • Mostly, the global methane emission comes from the metabolic activities of methanogens, which occurs in anaerobic environment. Based on the samples collected from typical stations in the Bohai Sea, we measured the concentrations of methane and sulfate in the sediments. The methane concentration in each sample was analyzed with different methanogenic substrates cultivation. The methanogen communities were measured by high-throughput sequencing techniques. The results indicated that the mainly methylotrophic pathway is methylotrophic methanogenesis, along with the hydrogenotrophic methanogenesis. Methane production decreased gradually with the depth increasing at the same station, and methane production rate decreased correspondingly at the same time. The archaea communities were dominated by Crenarchaeota, Asgardaeota and Nanoarchaeota, and Ca. Methanofastidiosales was the dominated methanogens. The results provide useful information for understanding the methanogenesis of methanogens in marine ecosystem.

  • 加载中
  • [1] Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles, 1988, 2(4): 299-327. doi: 10.1029/GB002i004p00299

    CrossRef Google Scholar

    [2] Jackson R B, Saunois M, Bousquet P, et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources [J]. Environmental Research Letters, 2020, 15(7): 071002. doi: 10.1088/1748-9326/ab9ed2

    CrossRef Google Scholar

    [3] Huber R, Kurr M, Jannasch H W, et al. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 C [J]. Nature, 1989, 342(6251): 833-834. doi: 10.1038/342833a0

    CrossRef Google Scholar

    [4] 王炳臣, 郑世玲, 张洪霞, 等. 渤海不同区域沉积物古菌的多样性分析[J]. 海洋科学, 2017, 41(5):8-16 doi: 10.11759/hykx20161024002

    CrossRef Google Scholar

    WANG Bingchen, ZHENG Shiling, ZHANG Hongxia, et al. Diversity of archaea in the sediments from different areas of the Bohai Sea [J]. Marine Sciences, 2017, 41(5): 8-16. doi: 10.11759/hykx20161024002

    CrossRef Google Scholar

    [5] 顾航, 肖凡书, 贺志理, 等. 湿地微生物介导的甲烷排放机制[J]. 微生物学报, 2018, 58(4):618-632

    Google Scholar

    GU Hang, XIAO Fanshu, HE Zhili, et al. Microbial driven methane emission mechanisms in wetland ecosystems [J]. Acta Microbiologica Sinica, 2018, 58(4): 618-632.

    Google Scholar

    [6] Evans P N, Parks D H, Chadwick G L, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics [J]. Science, 2015, 350(6259): 434-438. doi: 10.1126/science.aac7745

    CrossRef Google Scholar

    [7] Vanwonterghem I, Evans P N, Parks D H, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota [J]. Nature Microbiology, 2016, 1: 16170. doi: 10.1038/nmicrobiol.2016.170

    CrossRef Google Scholar

    [8] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review [J]. European Journal of Soil Biology, 2001, 37(1): 25-50. doi: 10.1016/S1164-5563(01)01067-6

    CrossRef Google Scholar

    [9] 王保玉, 刘建民, 韩作颖, 等. 产甲烷菌的分类及研究进展[J]. 基因组学与应用生物学, 2014, 33(2):418-425

    Google Scholar

    WANG Baoyu, LIU Jianmin, HAN Zuoying, et al. Recent progress and classification of methanogens [J]. Genomics and Applied Biology, 2014, 33(2): 418-425.

    Google Scholar

    [10] 吴美容, 张瑞, 周俊, 等. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5):1602-1606 doi: 10.3969/j.issn.0438-1157.2014.05.007

    CrossRef Google Scholar

    WU Meirong, ZHANG Rui, ZHOU Jun, et al. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria [J]. CIESC Journal, 2014, 65(5): 1602-1606. doi: 10.3969/j.issn.0438-1157.2014.05.007

    CrossRef Google Scholar

    [11] Zhou Z C, Chen J, Cao H L, et al. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes [J]. Frontiers in Microbiology, 2015, 5: 789.

    Google Scholar

    [12] 陈金全, 王风平. 珠江口海岸带沉积物甲烷相关古菌群落结构及多样性研究[J]. 云南大学学报:自然科学版, 2013, 35(2):240-245

    Google Scholar

    CHEN Jinquan, WANG Fengping. The community structure and diversity of methanogen-related organisms in Pearl River Estuary sediment [J]. Journal of Yunnan University, 2013, 35(2): 240-245.

    Google Scholar

    [13] 李小飞, 侯立军, 刘敏. 长江口沉积物甲烷产生潜力与产甲烷菌群落特征[J]. 环境科学学报, 2019, 39(5):1682-1690

    Google Scholar

    LI Xiaofei, HOU Lijun, LIU Min. Methane production potential and methanogens community in the sediments of the Yangtze Estuary [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1682-1690.

    Google Scholar

    [14] 王震, 李宜良, 赵鹏. 环渤海地区海洋渔业经济可持续发展对策研究[J]. 中国渔业经济, 2015, 33(1):38-43 doi: 10.3969/j.issn.1009-590X.2015.01.008

    CrossRef Google Scholar

    WANG Zhen, LI Yiliang, ZHAO Peng. A study on the countermeasures of sustainable development of Bohai marine fishery economy [J]. Chinese Fisheries Economics, 2015, 33(1): 38-43. doi: 10.3969/j.issn.1009-590X.2015.01.008

    CrossRef Google Scholar

    [15] 王晓磊, 冯秀丽, 刘潇, 等. 冬、夏季渤黄海表层沉积物粒度特征差异及其成因分析[J]. 海洋科学, 2015, 39(8):63-69 doi: 10.11759/hykx20130709001

    CrossRef Google Scholar

    WANG Xiaolei, FENG Xiuli, LIU Xiao, et al. Particle size differences of surface sediments in the Bohai Sea and the Yellow Sea between winter and summer and the genetic analysis [J]. Marine Sciences, 2015, 39(8): 63-69. doi: 10.11759/hykx20130709001

    CrossRef Google Scholar

    [16] Yamamoto A, Yamanaka Y, Oka A, et al. Ocean oxygen depletion due to decomposition of submarine methane hydrate [J]. Geophysical Research Letters, 2014, 41(14): 5075-5083. doi: 10.1002/2014GL060483

    CrossRef Google Scholar

    [17] Martin J M, Zhang J, Shi M C, et al. Actual flux of the Huanghe (Yellow river) sediment to the western Pacific ocean [J]. Netherlands Journal of Sea Research, 1993, 31(3): 243-254. doi: 10.1016/0077-7579(93)90025-N

    CrossRef Google Scholar

    [18] 田琪, 王佳, 范晓蕾, 等. 海洋油气田沉积物产甲烷活性及微生物生态[J]. 环境科学, 2014, 35(6):2322-2327

    Google Scholar

    TIAN Qi, WANG Jia, FAN Xiaolei, et al. Methanogenic activity and methanogen diversity in marine gas field sediments [J]. Environmental Science, 2014, 35(6): 2322-2327.

    Google Scholar

    [19] 高小玉, 樊景凤, 陈佳莹, 等. 大连“7.16”溢油事故对海洋石油烃降解菌和异养细菌丰度的影响[J]. 海洋环境科学, 2013, 32(5):688-692

    Google Scholar

    GAO Xiaoyu, FAN Jingfeng, CHEN Jiaying, et al. Influence on marine hydrocarbon-degradating bacteria and heterotrophic bacteria abundance by Dalian "7.16" oil spill accident [J]. Marine Environmental Science, 2013, 32(5): 688-692.

    Google Scholar

    [20] 苏园园, 丘仲锋, 张艳萍. 辽东湾水体吸收系数区域性半分析反演算法[J]. 海洋科学, 2015, 39(4):73-82 doi: 10.11759/hykx20140323001

    CrossRef Google Scholar

    SU Yuanyuan, QIU Zhongfeng, ZHANG Yanping. A regional semi-analytical algorithm to retrieve absorption coefficients in the Liaodong Bay [J]. Marine Sciences, 2015, 39(4): 73-82. doi: 10.11759/hykx20140323001

    CrossRef Google Scholar

    [21] 李凤业, 高抒, 贾建军, 等. 黄、渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼, 2002, 33(4):364-369 doi: 10.3321/j.issn:0029-814X.2002.04.004

    CrossRef Google Scholar

    LI Fengye, GAO Shu, JIA Jianjun, et al. Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow Seas [J]. Oceanologia et Limnologia Sinica, 2002, 33(4): 364-369. doi: 10.3321/j.issn:0029-814X.2002.04.004

    CrossRef Google Scholar

    [22] Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2767-2779. doi: 10.1016/j.gca.2005.01.002

    CrossRef Google Scholar

    [23] Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010

    CrossRef Google Scholar

    [24] Imachi H, Aoi K, Tasumi E, et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor [J]. The ISME Journal, 2011, 5(12): 1913-1925. doi: 10.1038/ismej.2011.64

    CrossRef Google Scholar

    [25] Imachi H, Sakai S, Hirayama H, et al. Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(10): 2258-2265. doi: 10.1099/ijs.0.65727-0

    CrossRef Google Scholar

    [26] Imachi H, Sakai S, Nagai H, et al. Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(4): 800-805. doi: 10.1099/ijs.0.003731-0

    CrossRef Google Scholar

    [27] Szafranek-Nakonieczna A, Zheng Y H, Słowakiewicz M, et al. Methanogenic potential of lignites in Poland [J]. International Journal of Coal Geology, 2018, 196: 201-210. doi: 10.1016/j.coal.2018.07.010

    CrossRef Google Scholar

    [28] Zhang S. The relationship between organoclastic sulfate reduction and carbonate precipitation/dissolution in marine sediments [J]. Marine Geology, 2020, 428: 106284. doi: 10.1016/j.margeo.2020.106284

    CrossRef Google Scholar

    [29] 杨冰, 卢向阳, 田云. 甲烷八叠球菌研究进展[J]. 化学与生物工程, 2012, 29(12):7-11 doi: 10.3969/j.issn.1672-5425.2012.12.002

    CrossRef Google Scholar

    YANG Bing, LU Xiangyang, TIAN Yun. Research progress of Methanosarcineae [J]. Chemistry & Bioengineering, 2012, 29(12): 7-11. doi: 10.3969/j.issn.1672-5425.2012.12.002

    CrossRef Google Scholar

    [30] 方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1):1-9

    Google Scholar

    FANG Xiaoyu, LI Jiabao, RUI Junpeng, et al. Research progress in biochemical pathways of methanogenesis [J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9.

    Google Scholar

    [31] Liu Y C, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189. doi: 10.1196/annals.1419.019

    CrossRef Google Scholar

    [32] Capson-Tojo G, Trably E, Rouez M, et al. Methanosarcina plays a main role during methanogenesis of high-solids food waste and cardboard [J]. Waste Management, 2018, 76: 423-430. doi: 10.1016/j.wasman.2018.04.004

    CrossRef Google Scholar

    [33] Tong C, She C X, Yang P, et al. Weak correlation between methane production and abundance of methanogens across three brackish marsh zones in the Min River Estuary, China [J]. Estuaries and Coasts, 2015, 38(6): 1872-1884. doi: 10.1007/s12237-014-9930-2

    CrossRef Google Scholar

    [34] Zeleke J, Lu S L, Wang J G, et al. Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River estuary, China [J]. Microbial Ecology, 2013, 66(2): 257-267. doi: 10.1007/s00248-012-0155-2

    CrossRef Google Scholar

    [35] Zhuang G C, Elling F J, Nigro L M, et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2016, 187: 1-20. doi: 10.1016/j.gca.2016.05.005

    CrossRef Google Scholar

    [36] Zhuang G C. Methylotrophic methanogenesis and potential methylated substrates in marine sediment[D]. Doctor Dissertation of Universität Bremen, 2014.

    Google Scholar

    [37] Summons R E, Franzmann P D, Nichols P D. Carbon isotopic fractionation associated with methylotrophic methanogenesis [J]. Organic Geochemistry, 1998, 28(7-8): 465-475. doi: 10.1016/S0146-6380(98)00011-4

    CrossRef Google Scholar

    [38] 王洁, 袁俊吉, 刘德燕, 等. 滨海湿地甲烷产生途径和产甲烷菌研究进展[J]. 应用生态学报, 2016, 27(3):993-1001

    Google Scholar

    WANG Jie, YUAN Junji, LIU Deyan, et al. Research progresses on methanogenesis pathway and methanogens in coastal wetlands [J]. Chinese Journal of Applied Ecology, 2016, 27(3): 993-1001.

    Google Scholar

    [39] Vizza C, West W E, Jones S E, et al. Regulators of coastal wetland methane production and responses to simulated global change [J]. Biogeosciences, 2017, 14(2): 431-446. doi: 10.5194/bg-14-431-2017

    CrossRef Google Scholar

    [40] Smith J M, Green S J, Kelley C A, et al. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat [J]. Environmental Microbiology, 2008, 10(2): 386-394. doi: 10.1111/j.1462-2920.2007.01459.x

    CrossRef Google Scholar

    [41] Hoehler T M, Alperin M J, Albert D B, et al. Apparent minimum free energy requirements for methanogenic archaea and sulfate-reducing bacteria in an anoxic marine sediment [J]. FEMS Microbiology Ecology, 2001, 38(1): 33-41. doi: 10.1111/j.1574-6941.2001.tb00879.x

    CrossRef Google Scholar

    [42] King G M. Utilization of hydrogen, acetate, and "noncompetitive"; substrates by methanogenic bacteria in marine sediments [J]. Geomicrobiology Journal, 1984, 3(4): 275-306. doi: 10.1080/01490458409377807

    CrossRef Google Scholar

    [43] Zhuang G C, Heuer V B, Lazar C S, et al. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea [J]. Geochimica et Cosmochimica Acta, 2018, 224: 171-186. doi: 10.1016/j.gca.2017.12.024

    CrossRef Google Scholar

    [44] 高立蒙, 姚鹏, 王金鹏, 等. 渤海表层沉积物中有机碳的分布和来源[J]. 海洋学报, 2016, 38(6):8-20

    Google Scholar

    GAO Limeng, YAO Peng, WANG Jinpeng, et al. Distribution and sources of organic carbon in surface sediments from the Bohai Sea [J]. Haiyang Xuebao, 2016, 38(6): 8-20.

    Google Scholar

    [45] Wang J P, Yao P, Bianchi T S, et al. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf [J]. Chemical Geology, 2015, 402: 52-67. doi: 10.1016/j.chemgeo.2015.02.040

    CrossRef Google Scholar

    [46] 王金鹏, 姚鹏, 孟佳, 等. 基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(6):41-57

    Google Scholar

    WANG Jinpeng, YAO Peng, MENG Jia, et al. Sources, distribution, and preservation of size-fractionated sedimentary organic carbon of the Changjiang Estuary and adjacent shelf based on water elutriation [J]. Haiyang Xuebao, 2015, 37(6): 41-57.

    Google Scholar

    [47] Cai D L. Geochemical studies on organic carbon isotope of the Huanghe River (Yellow River) estuary [J]. Science in China (Series B), 1994, 37(8): 1001-1015.

    Google Scholar

    [48] Ren M E, Shi Y L. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow sea [J]. Continental Shelf Research, 1986, 6(6): 785-810. doi: 10.1016/0278-4343(86)90037-3

    CrossRef Google Scholar

    [49] 吴自军, 周怀阳, 彭晓彤, 等. 甲烷厌氧氧化作用: 来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J]. 科学通报, 2006, 51(16):2006-2015 doi: 10.1007/s11434-006-2064-6

    CrossRef Google Scholar

    WU Zijun, ZHOU Huaiyang, PENG Xiaotong, et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China [J]. Chinese Science Bulletin, 2006, 51(16): 2006-2015. doi: 10.1007/s11434-006-2064-6

    CrossRef Google Scholar

    [50] 臧昆鹏. 渤海季节性耗氧海域甲烷浓度和海-气交换通量的季节演变特征及调控过程[D]. 中国气象科学研究院博士学位论文, 2018.

    Google Scholar

    ZANG Kunpeng. Seasonal variations and regulatory mechanisms of dissolved methane concentration and its sea-to-air fluxes in the seasonal oxygen deficient zones in Bohai Sea[D]. Doctor Dissertation of Chinese Academy of Meteorological Sciences, 2018.

    Google Scholar

    [51] Yu T T, Liang Q Y, Niu M Y, et al. High occurrence of Bathyarchaeota (MCG) in the deep‐sea sediments of South China Sea quantified using newly designed PCR primers [J]. Environmental microbiology reports, 2017, 9(4): 374-382. doi: 10.1111/1758-2229.12539

    CrossRef Google Scholar

    [52] Chen Y, Li S Q, Yu Z G, et al. Characteristics of the Bathyarchaeota community in surface sediments from the southern Yellow Sea and northern East China Sea [J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106595. doi: 10.1016/j.ecss.2020.106595

    CrossRef Google Scholar

    [53] 陈玉连, 潘杰, 周之超, 等. 滨海深古菌的研究进展[J]. 微生物学通报, 2017, 44(7):1690-1698

    Google Scholar

    CHEN Yulian, PAN Jie, ZHOU Zhichao, et al. Progress in studies on Bathyarchaeota in coastal ecosystems [J]. Microbiology China, 2017, 44(7): 1690-1698.

    Google Scholar

    [54] Wilms R, Köpke B, Sass H, et al. Deep biosphere‐related bacteria within the subsurface of tidal flat sediments [J]. Environmental Microbiology, 2006, 8(4): 709-719. doi: 10.1111/j.1462-2920.2005.00949.x

    CrossRef Google Scholar

    [55] Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10): 3846-3851. doi: 10.1073/pnas.0600035103

    CrossRef Google Scholar

    [56] 刘亚飞, 王波波, 张洪勋, 等. 芦岭煤田微生物群落结构和生物成因气的产甲烷类型研究[J]. 微生物学报, 2019, 59(6):1174-1187

    Google Scholar

    LIU Yafei, WANG Bobo, ZHANG Hongxun, et al. Microbial community and the type of methanogenesis associated with biogenic gas in Luling Coalfield, China [J]. Acta Microbiologica Sinica, 2019, 59(6): 1174-1187.

    Google Scholar

    [57] 承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5):1143-1164

    Google Scholar

    CHENG Lei, ZHENG Zhenzhen, WANG Cong, et al. Recent advances in methanogens [J]. Microbiology China, 2016, 43(5): 1143-1164.

    Google Scholar

    [58] Nobu M K, Narihiro T, Kuroda K, et al. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen [J]. The ISME Journal, 2016, 10(10): 2478-2487. doi: 10.1038/ismej.2016.33

    CrossRef Google Scholar

    [59] Lam T Y C, Mei R, Wu Z Y, et al. Superior resolution characterisation of microbial diversity in anaerobic digesters using full-length 16S rRNA gene amplicon sequencing [J]. Water Research, 2020, 178: 115815. doi: 10.1016/j.watres.2020.115815

    CrossRef Google Scholar

    [60] Liu F H, Lin G H, Gao G, et al. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis [J]. Journal of Applied Microbiology, 2009, 106(3): 1022-1032. doi: 10.1111/j.1365-2672.2008.04069.x

    CrossRef Google Scholar

    [61] 曾志华, 杨民和, 佘晨兴, 等. 闽江河口区淡水和半咸水潮汐沼泽湿地土壤产甲烷菌多样性[J]. 生态学报, 2014, 34(10):2674-2681

    Google Scholar

    ZENG Zhihua, YANG Minhe, SHE Chenxing, et al. Diversity of methanogen communities in tidal freshwater and brackish marsh soil in the Min River estuary [J]. Acta Ecologica Sinica, 2014, 34(10): 2674-2681.

    Google Scholar

    [62] Dridi B, Fardeau M L, Ollivier B, et al. Methanomassiliicoccus luminyensis gen. nov. , sp. nov. , a methanogenic archaeon isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8): 1902-1907.

    Google Scholar

    [63] Raymann K, Moeller A H, Goodman A L, et al. Unexplored archaeal diversity in the great ape gut microbiome [J]. mSphere, 2017, 2(1): e00026-17.

    Google Scholar

    [64] Söllinger A, Schwab C, Weinmaier T, et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences [J]. FEMS Microbiology Ecology, 2015, 92(1): fiv149.

    Google Scholar

    [65] Cozannet M, Borrel G, Roussel E, et al. New insights into the ecology and physiology of Methanomassiliicoccales from terrestrial and aquatic Environments [J]. Microorganisms, 2021, 9: 30.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(3101) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint