Citation: | WANG Ming, WANG Maomao, GUO Ziyi. Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801 |
Subduction of rough seafloor such as seamounts has an important influence on structure, geomorphology, stress, and seismic hazard of accretionary wedges. The Hikurangi subduction zone lies on the North Island of New Zealand, and the Hikurangi Plateau is subducting beneath the Australian Plate at a rate of 40–47 mm/a. Many seamounts of various shapes are distributed in the Hikurangi Plateau, whose subduction caused severe tectonic erosion along the northern Hikurangi Margin. In recent years, slow slip events (SSEs) have been well documented in seismology and geodesy at the Hikurangi northern margin. However, the evolution of tectonic erosion, structural stress regime, and their influences on seismicity remain unclear. By applying the discrete-element numerical simulation in combination with the interpretations of seismic reflection profile, the effects of seamount subduction on wedge geometry, fault structure, activity and strain distribution of the accretionary prism on the northern Hikurangi subduction margin were analyzed. The simulation result show that the subduction of a guyot seamount formed a mega-splay fault, which absorbed the substantial shortening and thrusts along the seafloor with low angle. With the subduction continued, a duplex shear zone was formed at the leading edge of the seamount, while the detachment moved down and extended forward to evolve into a frontal-thrust zone. Our simulations confirm that the seamount subduction enhanced the heterogeneity of the stress distribution within the forearc accretionary wedge, with significant accumulation of maximum shear stress at the leading edge of the seamount, while the rear edge of the seamount behaved as a stable stress shadow zone. The seamount subduction significantly increased the geometric roughness and material heterogeneity along the megathrust in the Hikurangi Margin, which has important implications for the generation of micro-earthquakes and slow slip events.
[1] | Cloos M. Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture [J]. Geology, 1992, 20(7): 601-604. doi: 10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2 |
[2] | Scholz C H, Small C. The effect of seamount subduction on seismic coupling [J]. Geology, 1997, 25(6): 487-490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2 |
[3] | Dominguez S, Lallemand S E, Malavieille J, et al. Upper plate deformation associated with seamount subduction [J]. Tectonophysics, 1998, 293(3-4): 207-224. doi: 10.1016/S0040-1951(98)00086-9 |
[4] | Wang K L, Bilek S L. Do subducting seamounts generate or stop large earthquakes? [J]. Geology, 2011, 39(9): 819-822. doi: 10.1130/G31856.1 |
[5] | Tao J L, Dai L M, Lou D, et al. Accretion of oceanic plateaus at continental margins: numerical modeling [J]. Gondwana Research, 2020, 81: 390-402. doi: 10.1016/j.gr.2019.11.015 |
[6] | Dai L M, Wang L L, Lou D, et al. Slab rollback versus delamination: contrasting fates of flat‐slab subduction and implications for South China evolution in the Mesozoic [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB019164. |
[7] | Wang L L, Dai L M, Gong W, et al. Subduction initiation at the Solomon back-arc basin: Contributions from both island arc rheological strength and oceanic plateau collision [J]. Geophysical Research Letters, 2020, 49(3): e2021GL093369. |
[8] | Dominguez S, Malavieille J, Lallemand S E. Deformation of accretionary wedges in response to seamount subduction: insights from sandbox experiments [J]. Tectonics, 2000, 19(1): 182-196. doi: 10.1029/1999TC900055 |
[9] | Liu Z, Dai L M, Li S Z, et al. When plateau meets subduction zone: a review of numerical models [J]. Earth-Science Reviews, 2021, 215: 103556. doi: 10.1016/j.earscirev.2021.103556 |
[10] | Baba T, Hori T, Hirano S, et al. Deformation of a seamount subducting beneath an accretionary prism: constraints from numerical simulation [J]. Geophysical Research Letters, 2001, 28(9): 1827-1830. doi: 10.1029/2000GL012266 |
[11] | Bangs N L B, Gulick S P S, Shipley T H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone [J]. Geology, 2006, 34(8): 701-704. doi: 10.1130/G22451.1 |
[12] | Strasser M, Moore G F, Kimura G, et al. Origin and evolution of a splay fault in the Nankai accretionary wedge [J]. Nature Geoscience, 2009, 2(9): 648-652. doi: 10.1038/ngeo609 |
[13] | Cole J W, Lewis K B. Evolution of the Taupo-Hikurangi subduction system [J]. Tectonophysics, 1981, 72(1-2): 1-21. doi: 10.1016/0040-1951(81)90084-6 |
[14] | Davy B, Hoernle K, Werner R. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07004. |
[15] | Lewis K B. The 1500-km-long Hikurangi Channel: trench-axis channel that escapes its trench, crosses a plateau, and feeds a fan drift [J]. Geo-Marine Letters, 1994, 14(1): 19-28. doi: 10.1007/BF01204467 |
[16] | Taylor B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 372-380. doi: 10.1016/j.jpgl.2005.11.049 |
[17] | Barnes P M, Wallace L M, Saffer D M, et al. Slow slip source characterized by lithological and geometric heterogeneity [J]. Science Advances, 2020, 6(13): eaay3314. doi: 10.1126/sciadv.aay3314 |
[18] | Barnes P M, Lamarche G, Bialas J, et al. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand [J]. Marine Geology, 2010, 272(1-4): 26-48. doi: 10.1016/j.margeo.2009.03.012 |
[19] | Collot J Y, Lewis K, Lamarche G, et al. The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: result of oblique seamount subduction [J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B9): 19271-19297. doi: 10.1029/2001JB900004 |
[20] | Lewis K B, Collot J Y, Lallem S E. The dammed Hikurangi Trough: a channel‐fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project) [J]. Basin Research, 1998, 10(4): 441-468. doi: 10.1046/j.1365-2117.1998.00080.x |
[21] | Lewis K B, Lallemand S E, Carter L. Collapse in a Quaternary shelf basin off East Cape, New Zealand: evidence for passage of a subducted seamount inboard of the Ruatoria giant avalanche [J]. New Zealand Journal of Geology and Geophysics, 2004, 47(3): 415-429. doi: 10.1080/00288306.2004.9515067 |
[22] | Wallace L M, Beavan J, Bannister S, et al. Simultaneous long‐term and short‐term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration [J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B11): B11402. |
[23] | Wang K L, Bilek S L. Invited review paper: fault creep caused by subduction of rough seafloor relief [J]. Tectonophysics, 2014, 610: 1-24. doi: 10.1016/j.tecto.2013.11.024 |
[24] | Barker D H N, Henrys S, Caratori Tontini F, et al. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand [J]. Geophysical Research Letters, 2018, 45(23): 12804-12813. |
[25] | Bassett D, Watts A B. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1508-1540. doi: 10.1002/2014GC005684 |
[26] | Bell R, Holden C, Power W, et al. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount [J]. Earth and Planetary Science Letters, 2014, 397: 1-9. doi: 10.1016/j.jpgl.2014.04.005 |
[27] | Sun T H Z, Saffer D, Ellis S. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip [J]. Nature Geoscience, 2020, 13(3): 249-255. doi: 10.1038/s41561-020-0542-0 |
[28] | Wallace L M, Beavan J, McCaffrey R, et al. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12406. doi: 10.1029/2004JB003241 |
[29] | Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349 |
[30] | Chesley C, Naif S, Key K, et al. Fluid-rich subducting topography generates anomalous forearc porosity [J]. Nature, 2021, 595(7866): 255-260. doi: 10.1038/s41586-021-03619-8 |
[31] | Fagereng Å, Savage H M, Morgan J K, et al. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand [J]. Geology, 2019, 47(9): 872-876. doi: 10.1130/G46367.1 |
[32] | Gray M, Bell R E, Morgan J V, et al. Imaging the shallow subsurface structure of the North Hikurangi Subduction Zone, New Zealand, using 2‐D full‐waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(8): 9049-9074. doi: 10.1029/2019JB017793 |
[33] | Wallace L M, Saffer D M, Barnes P M, et al. Hikurangi subduction margin coring, logging, and observatories [J]. Proceedings of the International Ocean Discovery Program, 2019: 372B/375. |
[34] | Arai R, Kodaira S, Henrys S, et al. Three‐dimensional P wave velocity structure of the Northern Hikurangi margin from the NZ3D experiment: evidence for fault‐bound anisotropy [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(12): e2020JB020433. |
[35] | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29(1): 47-65. |
[36] | Morgan J K. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: discrete element simulations [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(5): 3870-3896. doi: 10.1002/2014JB011455 |
[37] | Mortimer N, Parkinson D. Hikurangi Plateau: a cretaceous large igneous province in the Southwest Pacific Ocean [J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B1): 687-696. doi: 10.1029/95JB03037 |
[38] | Barker D H N, Sutherland R, Henrys S, et al. Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02007. |
[39] | Dutilleul J, Bourlange S, Géraud Y. Porosity and compaction state at the active Pāpaku thrust fault in the frontal accretionary wedge of the North Hikurangi margin [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(10): e2020GC009325. |
[40] | Savage H M, Shreedharan S, Fagereng Å, et al. Asymmetric brittle deformation at the Pāpaku Fault, Hikurangi Subduction Margin, NZ, IODP expedition 375 [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(8): e2021GC009662. |
[41] | Dean S L, Morgan J K, Fournier T. Geometries of frontal fold and thrust belts: Insights from discrete element simulations [J]. Journal of Structural Geology, 2013, 53: 43-53. doi: 10.1016/j.jsg.2013.05.008 |
[42] | Ellis S, Schreurs G, Panien M. Comparisons between analogue and numerical models of thrust wedge development [J]. Journal of Structural Geology, 2004, 26(9): 1659-1675. doi: 10.1016/j.jsg.2004.02.012 |
[43] | Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges [J]. Marine and Petroleum Geology, 2009, 26(2): 232-248. doi: 10.1016/j.marpetgeo.2007.12.003 |
[44] | Morgan J K, Bangs N L. Recognizing seamount-forearc collisions at accretionary margins: Insights from discrete numerical simulations [J]. Geology, 2017, 45(7): 635-638. doi: 10.1130/G38923.1 |
[45] | Saffer D M, Underwood M B, McKiernan A W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough [J]. Island Arc, 2008, 17(2): 208-230. doi: 10.1111/j.1440-1738.2008.00614.x |
[46] | Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events [J]. Geophysical Journal International, 2010, 180(1): 34-48. doi: 10.1111/j.1365-246X.2009.04401.x |
[47] | Watson S J, Mountjoy J J, Barnes P M, et al. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand [J]. Geology, 2020, 48(1): 56-61. doi: 10.1130/G46666.1 |
[48] | Dahlen F A, Barr T D. Brittle frictional mountain building: 1. deformation and mechanical energy budget [J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B4): 3906-3922. doi: 10.1029/JB094iB04p03906 |
[49] | Moore G F, Bangs N L, Taira A, et al. Three-dimensional splay fault geometry and implications for tsunami generation [J]. Science, 2007, 318(5853): 1128-1131. doi: 10.1126/science.1147195 |
[50] | Doser D I, Webb T H. Source parameters of large historical (1917-1961) earthquakes, North Island, New Zealand [J]. Geophysical Journal International, 2003, 152(3): 795-832. doi: 10.1046/j.1365-246X.2003.01895.x |
[51] | Kimura G, Moore G F, Strasser M, et al. Spatial and temporal evolution of the megasplay fault in the Nankai Trough [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0A008. |
[52] | von Huene R, Miller J J, Klaeschen D, et al. A possible source mechanism of the 1946 Unimak Alaska far-field tsunami: Uplift of the mid-slope terrace above a splay fault zone [J]. Pure and Applied Geophysics, 2016, 173(12): 4189-4201. doi: 10.1007/s00024-016-1393-x |
[53] | von Huene R, Miller J J, Krabbenhoeft A. The Alaska convergent margin backstop splay fault zone, a potential large tsunami generator between the frontal prism and continental framework [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2019GC008901. |
[54] | Morgan J K, Solomon E A, Fagereng A, et al. Seafloor overthrusting causes ductile fault deformation and fault sealing along the Northern Hikurangi Margin [J]. Earth and Planetary Science Letters, 2022, 593: 117651. doi: 10.1016/j.jpgl.2022.117651 |
[55] | Calvert A J. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone [J]. Nature, 2004, 428(6979): 163-167. doi: 10.1038/nature02372 |
[56] | Nedimović M R, Hyndman R D, Ramachandran K, et al. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface [J]. Nature, 2003, 424(6947): 416-420. doi: 10.1038/nature01840 |
Tectonic setting of the northern Hikurangi subduction margin, southern Pacific
Two possible “seamount models” in the Hikurangi subduction zone[34]
The structural interpretation of seismic reflection profile 05CM-04 at the northern Hikurangi margin[17]
The model setups of discrete-element numerical simulation
The experimental evolution of structural deformation and strain in the wedges
Statistical graphs of surface slope (A) and wedge width (B) versus shortening in seamount versus smooth seafloor models
Statistical graphs of fault displacements versus shortening in wedges
Results of maximum shear stress in the smooth seafloor (A) and seamount (B) subduction models
Three-stage model of faults evolution related to seamount subduction
Comparison between DEM simulation results and structural profile in Hikurangi subduction zone