2023 Vol. 43, No. 1
Article Contents

WANG Ming, WANG Maomao, GUO Ziyi. Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801
Citation: WANG Ming, WANG Maomao, GUO Ziyi. Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801

Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling

More Information
  • Subduction of rough seafloor such as seamounts has an important influence on structure, geomorphology, stress, and seismic hazard of accretionary wedges. The Hikurangi subduction zone lies on the North Island of New Zealand, and the Hikurangi Plateau is subducting beneath the Australian Plate at a rate of 40–47 mm/a. Many seamounts of various shapes are distributed in the Hikurangi Plateau, whose subduction caused severe tectonic erosion along the northern Hikurangi Margin. In recent years, slow slip events (SSEs) have been well documented in seismology and geodesy at the Hikurangi northern margin. However, the evolution of tectonic erosion, structural stress regime, and their influences on seismicity remain unclear. By applying the discrete-element numerical simulation in combination with the interpretations of seismic reflection profile, the effects of seamount subduction on wedge geometry, fault structure, activity and strain distribution of the accretionary prism on the northern Hikurangi subduction margin were analyzed. The simulation result show that the subduction of a guyot seamount formed a mega-splay fault, which absorbed the substantial shortening and thrusts along the seafloor with low angle. With the subduction continued, a duplex shear zone was formed at the leading edge of the seamount, while the detachment moved down and extended forward to evolve into a frontal-thrust zone. Our simulations confirm that the seamount subduction enhanced the heterogeneity of the stress distribution within the forearc accretionary wedge, with significant accumulation of maximum shear stress at the leading edge of the seamount, while the rear edge of the seamount behaved as a stable stress shadow zone. The seamount subduction significantly increased the geometric roughness and material heterogeneity along the megathrust in the Hikurangi Margin, which has important implications for the generation of micro-earthquakes and slow slip events.

  • 加载中
  • [1] Cloos M. Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture [J]. Geology, 1992, 20(7): 601-604. doi: 10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2

    CrossRef Google Scholar

    [2] Scholz C H, Small C. The effect of seamount subduction on seismic coupling [J]. Geology, 1997, 25(6): 487-490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2

    CrossRef Google Scholar

    [3] Dominguez S, Lallemand S E, Malavieille J, et al. Upper plate deformation associated with seamount subduction [J]. Tectonophysics, 1998, 293(3-4): 207-224. doi: 10.1016/S0040-1951(98)00086-9

    CrossRef Google Scholar

    [4] Wang K L, Bilek S L. Do subducting seamounts generate or stop large earthquakes? [J]. Geology, 2011, 39(9): 819-822. doi: 10.1130/G31856.1

    CrossRef Google Scholar

    [5] Tao J L, Dai L M, Lou D, et al. Accretion of oceanic plateaus at continental margins: numerical modeling [J]. Gondwana Research, 2020, 81: 390-402. doi: 10.1016/j.gr.2019.11.015

    CrossRef Google Scholar

    [6] Dai L M, Wang L L, Lou D, et al. Slab rollback versus delamination: contrasting fates of flat‐slab subduction and implications for South China evolution in the Mesozoic [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB019164.

    Google Scholar

    [7] Wang L L, Dai L M, Gong W, et al. Subduction initiation at the Solomon back-arc basin: Contributions from both island arc rheological strength and oceanic plateau collision [J]. Geophysical Research Letters, 2020, 49(3): e2021GL093369.

    Google Scholar

    [8] Dominguez S, Malavieille J, Lallemand S E. Deformation of accretionary wedges in response to seamount subduction: insights from sandbox experiments [J]. Tectonics, 2000, 19(1): 182-196. doi: 10.1029/1999TC900055

    CrossRef Google Scholar

    [9] Liu Z, Dai L M, Li S Z, et al. When plateau meets subduction zone: a review of numerical models [J]. Earth-Science Reviews, 2021, 215: 103556. doi: 10.1016/j.earscirev.2021.103556

    CrossRef Google Scholar

    [10] Baba T, Hori T, Hirano S, et al. Deformation of a seamount subducting beneath an accretionary prism: constraints from numerical simulation [J]. Geophysical Research Letters, 2001, 28(9): 1827-1830. doi: 10.1029/2000GL012266

    CrossRef Google Scholar

    [11] Bangs N L B, Gulick S P S, Shipley T H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone [J]. Geology, 2006, 34(8): 701-704. doi: 10.1130/G22451.1

    CrossRef Google Scholar

    [12] Strasser M, Moore G F, Kimura G, et al. Origin and evolution of a splay fault in the Nankai accretionary wedge [J]. Nature Geoscience, 2009, 2(9): 648-652. doi: 10.1038/ngeo609

    CrossRef Google Scholar

    [13] Cole J W, Lewis K B. Evolution of the Taupo-Hikurangi subduction system [J]. Tectonophysics, 1981, 72(1-2): 1-21. doi: 10.1016/0040-1951(81)90084-6

    CrossRef Google Scholar

    [14] Davy B, Hoernle K, Werner R. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07004.

    Google Scholar

    [15] Lewis K B. The 1500-km-long Hikurangi Channel: trench-axis channel that escapes its trench, crosses a plateau, and feeds a fan drift [J]. Geo-Marine Letters, 1994, 14(1): 19-28. doi: 10.1007/BF01204467

    CrossRef Google Scholar

    [16] Taylor B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 372-380. doi: 10.1016/j.jpgl.2005.11.049

    CrossRef Google Scholar

    [17] Barnes P M, Wallace L M, Saffer D M, et al. Slow slip source characterized by lithological and geometric heterogeneity [J]. Science Advances, 2020, 6(13): eaay3314. doi: 10.1126/sciadv.aay3314

    CrossRef Google Scholar

    [18] Barnes P M, Lamarche G, Bialas J, et al. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand [J]. Marine Geology, 2010, 272(1-4): 26-48. doi: 10.1016/j.margeo.2009.03.012

    CrossRef Google Scholar

    [19] Collot J Y, Lewis K, Lamarche G, et al. The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: result of oblique seamount subduction [J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B9): 19271-19297. doi: 10.1029/2001JB900004

    CrossRef Google Scholar

    [20] Lewis K B, Collot J Y, Lallem S E. The dammed Hikurangi Trough: a channel‐fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project) [J]. Basin Research, 1998, 10(4): 441-468. doi: 10.1046/j.1365-2117.1998.00080.x

    CrossRef Google Scholar

    [21] Lewis K B, Lallemand S E, Carter L. Collapse in a Quaternary shelf basin off East Cape, New Zealand: evidence for passage of a subducted seamount inboard of the Ruatoria giant avalanche [J]. New Zealand Journal of Geology and Geophysics, 2004, 47(3): 415-429. doi: 10.1080/00288306.2004.9515067

    CrossRef Google Scholar

    [22] Wallace L M, Beavan J, Bannister S, et al. Simultaneous long‐term and short‐term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration [J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B11): B11402.

    Google Scholar

    [23] Wang K L, Bilek S L. Invited review paper: fault creep caused by subduction of rough seafloor relief [J]. Tectonophysics, 2014, 610: 1-24. doi: 10.1016/j.tecto.2013.11.024

    CrossRef Google Scholar

    [24] Barker D H N, Henrys S, Caratori Tontini F, et al. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand [J]. Geophysical Research Letters, 2018, 45(23): 12804-12813.

    Google Scholar

    [25] Bassett D, Watts A B. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1508-1540. doi: 10.1002/2014GC005684

    CrossRef Google Scholar

    [26] Bell R, Holden C, Power W, et al. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount [J]. Earth and Planetary Science Letters, 2014, 397: 1-9. doi: 10.1016/j.jpgl.2014.04.005

    CrossRef Google Scholar

    [27] Sun T H Z, Saffer D, Ellis S. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip [J]. Nature Geoscience, 2020, 13(3): 249-255. doi: 10.1038/s41561-020-0542-0

    CrossRef Google Scholar

    [28] Wallace L M, Beavan J, McCaffrey R, et al. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12406. doi: 10.1029/2004JB003241

    CrossRef Google Scholar

    [29] Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349

    CrossRef Google Scholar

    [30] Chesley C, Naif S, Key K, et al. Fluid-rich subducting topography generates anomalous forearc porosity [J]. Nature, 2021, 595(7866): 255-260. doi: 10.1038/s41586-021-03619-8

    CrossRef Google Scholar

    [31] Fagereng Å, Savage H M, Morgan J K, et al. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand [J]. Geology, 2019, 47(9): 872-876. doi: 10.1130/G46367.1

    CrossRef Google Scholar

    [32] Gray M, Bell R E, Morgan J V, et al. Imaging the shallow subsurface structure of the North Hikurangi Subduction Zone, New Zealand, using 2‐D full‐waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(8): 9049-9074. doi: 10.1029/2019JB017793

    CrossRef Google Scholar

    [33] Wallace L M, Saffer D M, Barnes P M, et al. Hikurangi subduction margin coring, logging, and observatories [J]. Proceedings of the International Ocean Discovery Program, 2019: 372B/375.

    Google Scholar

    [34] Arai R, Kodaira S, Henrys S, et al. Three‐dimensional P wave velocity structure of the Northern Hikurangi margin from the NZ3D experiment: evidence for fault‐bound anisotropy [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(12): e2020JB020433.

    Google Scholar

    [35] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29(1): 47-65.

    Google Scholar

    [36] Morgan J K. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: discrete element simulations [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(5): 3870-3896. doi: 10.1002/2014JB011455

    CrossRef Google Scholar

    [37] Mortimer N, Parkinson D. Hikurangi Plateau: a cretaceous large igneous province in the Southwest Pacific Ocean [J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B1): 687-696. doi: 10.1029/95JB03037

    CrossRef Google Scholar

    [38] Barker D H N, Sutherland R, Henrys S, et al. Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02007.

    Google Scholar

    [39] Dutilleul J, Bourlange S, Géraud Y. Porosity and compaction state at the active Pāpaku thrust fault in the frontal accretionary wedge of the North Hikurangi margin [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(10): e2020GC009325.

    Google Scholar

    [40] Savage H M, Shreedharan S, Fagereng Å, et al. Asymmetric brittle deformation at the Pāpaku Fault, Hikurangi Subduction Margin, NZ, IODP expedition 375 [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(8): e2021GC009662.

    Google Scholar

    [41] Dean S L, Morgan J K, Fournier T. Geometries of frontal fold and thrust belts: Insights from discrete element simulations [J]. Journal of Structural Geology, 2013, 53: 43-53. doi: 10.1016/j.jsg.2013.05.008

    CrossRef Google Scholar

    [42] Ellis S, Schreurs G, Panien M. Comparisons between analogue and numerical models of thrust wedge development [J]. Journal of Structural Geology, 2004, 26(9): 1659-1675. doi: 10.1016/j.jsg.2004.02.012

    CrossRef Google Scholar

    [43] Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges [J]. Marine and Petroleum Geology, 2009, 26(2): 232-248. doi: 10.1016/j.marpetgeo.2007.12.003

    CrossRef Google Scholar

    [44] Morgan J K, Bangs N L. Recognizing seamount-forearc collisions at accretionary margins: Insights from discrete numerical simulations [J]. Geology, 2017, 45(7): 635-638. doi: 10.1130/G38923.1

    CrossRef Google Scholar

    [45] Saffer D M, Underwood M B, McKiernan A W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough [J]. Island Arc, 2008, 17(2): 208-230. doi: 10.1111/j.1440-1738.2008.00614.x

    CrossRef Google Scholar

    [46] Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events [J]. Geophysical Journal International, 2010, 180(1): 34-48. doi: 10.1111/j.1365-246X.2009.04401.x

    CrossRef Google Scholar

    [47] Watson S J, Mountjoy J J, Barnes P M, et al. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand [J]. Geology, 2020, 48(1): 56-61. doi: 10.1130/G46666.1

    CrossRef Google Scholar

    [48] Dahlen F A, Barr T D. Brittle frictional mountain building: 1. deformation and mechanical energy budget [J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B4): 3906-3922. doi: 10.1029/JB094iB04p03906

    CrossRef Google Scholar

    [49] Moore G F, Bangs N L, Taira A, et al. Three-dimensional splay fault geometry and implications for tsunami generation [J]. Science, 2007, 318(5853): 1128-1131. doi: 10.1126/science.1147195

    CrossRef Google Scholar

    [50] Doser D I, Webb T H. Source parameters of large historical (1917-1961) earthquakes, North Island, New Zealand [J]. Geophysical Journal International, 2003, 152(3): 795-832. doi: 10.1046/j.1365-246X.2003.01895.x

    CrossRef Google Scholar

    [51] Kimura G, Moore G F, Strasser M, et al. Spatial and temporal evolution of the megasplay fault in the Nankai Trough [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0A008.

    Google Scholar

    [52] von Huene R, Miller J J, Klaeschen D, et al. A possible source mechanism of the 1946 Unimak Alaska far-field tsunami: Uplift of the mid-slope terrace above a splay fault zone [J]. Pure and Applied Geophysics, 2016, 173(12): 4189-4201. doi: 10.1007/s00024-016-1393-x

    CrossRef Google Scholar

    [53] von Huene R, Miller J J, Krabbenhoeft A. The Alaska convergent margin backstop splay fault zone, a potential large tsunami generator between the frontal prism and continental framework [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2019GC008901.

    Google Scholar

    [54] Morgan J K, Solomon E A, Fagereng A, et al. Seafloor overthrusting causes ductile fault deformation and fault sealing along the Northern Hikurangi Margin [J]. Earth and Planetary Science Letters, 2022, 593: 117651. doi: 10.1016/j.jpgl.2022.117651

    CrossRef Google Scholar

    [55] Calvert A J. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone [J]. Nature, 2004, 428(6979): 163-167. doi: 10.1038/nature02372

    CrossRef Google Scholar

    [56] Nedimović M R, Hyndman R D, Ramachandran K, et al. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface [J]. Nature, 2003, 424(6947): 416-420. doi: 10.1038/nature01840

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(2141) PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint