Citation: | ZHANG Yunshan, WU Nan, JIA Yonggang, WEI Jiangong. Characteristics of submarine landslides and their implications for petroleum geology[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 94-104. doi: 10.16562/j.cnki.0256-1492.2022052001 |
Submarine landslide is a type of sediment transport body that occurs widely in the regions from outer continental shelf to upper continental slope and to deep-sea plain due to gravity instability. It is an important transport process of seafloor sediments. Its strong power of erosion could transport a huge amount of sediments from continental shelf to deep sea. A landslide event has an important impact on submarine hydrocarbon accumulation and distribution because of its special internal structure. This mini-review summarizes studies on submarine landslide and its role in shaping and re-working marine hydrocarbon resources, specified the characteristics in spatial distribution and vertical structure of submarine landslides, and revealed preliminarily the petrophysical characteristics of landslides. Based on the above-mentioned works, the roles of submarine landslides in both positive and negative manner, on submarine oil and gas reservoirs was analyzed in terms of provenance, reservoir, caprock, and variations in seafloor temperature and pressure. Finally, combined with the current research progresses, we pointed out that the future direction of research shall focus on the microscale characteristics of submarine landslides, on the relationship between submarine landslides and submarine oil and gas reservoirs, and on the prevention in submarine-landslide–risk regions against possible disaster from trigging during offshore operation of oil and gas development.
[1] | Hampton M A, Lee H J, Locat J. Submarine landslides [J]. Reviews of Geophysics, 1996, 34(1): 33-59. doi: 10.1029/95RG03287 |
[2] | Locat J, Lee H, Ten Brink U S, et al. Geomorphology, stability and mobility of the Currituck slide [J]. Marine Geology, 2009, 264(1-2): 28-40. doi: 10.1016/j.margeo.2008.12.005 |
[3] | 朱超祁, 贾永刚, 刘晓磊, 等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):153-163 ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic machanism of submarine landslide: a review [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 153-163. |
[4] | 贾永刚, 王振豪, 刘晓磊, 等. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报, 2017, 47(10):61-72 JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. The research progress of field investigation and in-situ observation methods for submarine landslide [J]. Periodical of Ocean University of China, 2017, 47(10): 61-72. |
[5] | 宋晓帅, 孙志文, 朱超祁, 等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质, 2022, 42(1):222-235 doi: 10.16562/j.cnki.0256-1492.2021062701 SONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, et al. A review on deepwater landslide [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 222-235. doi: 10.16562/j.cnki.0256-1492.2021062701 |
[6] | 潘继平, 张大伟, 岳来群, 等. 全球海洋油气勘探开发状况与发展趋势[J]. 中国矿业, 2006, 15(11):1-4 doi: 10.3969/j.issn.1004-4051.2006.11.001 PAN Jiping, ZHANG Dawei, YUE Laiqun, et al. Status quo of global offshore oil and gas exploration and development and its trends [J]. China Mining Magazine, 2006, 15(11): 1-4. doi: 10.3969/j.issn.1004-4051.2006.11.001 |
[7] | Randolph M F, Gaudin C, Gourvenec S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments [J]. Ocean Engineering, 2011, 38(7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021 |
[8] | 苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89 doi: 10.3787/j.issn.1000-0976.2020.08.006 SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006 |
[9] | 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24 doi: 10.3787/j.issn.1000-0976.2020.08.001 NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China [J]. Natural Gas Industry, 2020, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001 |
[10] | Gee M J R, Masson D G, Watts A B, et al. The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows [J]. Sedimentology, 1999, 46(2): 317-335. doi: 10.1046/j.1365-3091.1999.00215.x |
[11] | Solheim A, Berg K, Forsberg C F, et al. The Storegga Slide complex: repetitive large scale sliding with similar cause and development [J]. Marine and Petroleum Geology, 2005, 22(1-2): 97-107. doi: 10.1016/j.marpetgeo.2004.10.013 |
[12] | 年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6):1657-1675 doi: 10.13544/j.cnki.jeg.2021-0815 NIAN Tingkai, SHEN Yueqiang, ZHENG Defeng, et al. Research advances on the chain disasters of submarine landslides [J]. Journal of Engineering Geology, 2021, 29(6): 1657-1675. doi: 10.13544/j.cnki.jeg.2021-0815 |
[13] | 贾永刚, 陈天, 李培英, 等. 海洋地质灾害原位监测技术研究进展[J]. 中国地质灾害与防治学报, 2022, 33(3):1-14 doi: 10.16031/j.cnki.issn.1003-8035.2022.03-01 JIA Yonggang, CHEN Tian, LI Peiying, et al. Research progress on the in-situ monitoring technologies of marine geohazards [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 1-14. doi: 10.16031/j.cnki.issn.1003-8035.2022.03-01 |
[14] | Micallef A, Masson D G, Berndt C, et al. Submarine spreading in the Storegga Slide, Norwegian Sea [J]. Geological Society, London, Memoirs, 2016, 46(1): 411-412. doi: 10.1144/M46.88 |
[15] | Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011 |
[16] | Wang W W, Wang D W, Wu S G, et al. Submarine landslides on the north continental slope of the South China Sea [J]. Journal of Ocean University of China, 2018, 17(1): 83-100. doi: 10.1007/s11802-018-3491-0 |
[17] | Wu N. Multi-scale, multidisciplinary analysis of mass-transport complex (MTC) emplacement and structure[D]. Doctor Dissertation of Imperial College London, 2020. |
[18] | Frey Martinez J, Cartwright J, Hall B. 3D seismic interpretation of slump complexes: examples from the continental margin of Israel [J]. Basin Research, 2005, 17(1): 83-108. doi: 10.1111/j.1365-2117.2005.00255.x |
[19] | Nugraha H D, Jackson C A L, Johnson H D, et al. How erosive are submarine landslides[J]. Geology, 2019. |
[20] | 何叶, 钟广法. 海底滑坡及其反射地震识别综述[J]. 海洋科学, 2015, 39(1):116-125 doi: 10.11759/hykx20130714001 HE Ye, ZHONG Guangfa. Current status of submarine landslides and their seismic recognition [J]. Marine Sciences, 2015, 39(1): 116-125. doi: 10.11759/hykx20130714001 |
[21] | Imbo Y, De Batist M, Canals M, et al. The Gebra Slide; a submarine slide on the Trinity Peninsula margin, Antarctica[J]. Marine geology, 2003, 193(3-4): 235-252. |
[22] | Bryn P, Berg K, Forsberg C F, et al. Explaining the Storegga slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 11-19. doi: 10.1016/j.marpetgeo.2004.12.003 |
[23] | Vanneste M, Mienert J, Bunz S. The Hinlopen Slide; a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean[J]. Earth and planetary science letters, 2006, 245(1-2): 373-388. |
[24] | Jared W Kluesner D S B A. Structural controls on slope failure within the western Santa Barbara Channel based on 2D and 3D seismic imaging [J]. Geochemistry,Geophysics, Geosystems, 2020, 8(21):1-34. |
[25] | Lenz B L, Sawyer D E, Phrampus B, et al. Seismic imaging of seafloor deformation induced by impact from large submarine landslide blocks, offshore Oregon[J]. Geosciences (Basel), 2019, 9(1): 10. |
[26] | Katz O, Reuven E, Aharonov E. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental slope[J]. Marine geology, 2015, 369: 100-115. |
[27] | 孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 2008, 28(6):69-77 SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77. |
[28] | Alves T M, Kurtev K, Moore G F, et al. Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach [J]. AAPG Bulletin, 2014, 98(4): 793-824. doi: 10.1306/09121313117 |
[29] | Scarselli N. Submarine landslides: architecture, controlling factors and environments. A summary[M]//Scarselli N, Adam J, Chiarella D, et al. Regional Geology and Tectonics. Volume 1: Principles of Geologic Analysis. 2nd ed. Amsterdam: Elsevier, 2020: 417-439. |
[30] | 吴时国, 马林伟, 孙金, 等. 海上丝绸之路大型地质灾害: 特点与现状[J]. 地球物理学进展, 2021, 36(1):401-411 doi: 10.6038/pg2021EE0316 WU Shiguo, MA Linwei, SUN Jin, et al. Characteristic and current status of some large-scale geological disasters along the Maritime Silk Road [J]. Progress in Geophysics, 2021, 36(1): 401-411. doi: 10.6038/pg2021EE0316 |
[31] | Nugraha H D, Jackson C A L, Johnson H D, et al. Evolution of flow cells within a mass-transport complex: Insights from the Gorgon Slide, offshore NW Australia[Z]. EarthArXiv, 2020. |
[32] | Le Goff J, Slootman A, Mulder T, et al. On the architecture of intra-formational mass-transport deposits; insights from the carbonate slopes of Great Bahama Bank and the Apulian carbonate platform[J]. Marine geology, 2020, 427: 106205. |
[33] | Scarselli N, McClay K, Elders C. Submarine slide and slump complexes, Exmouth Plateau, NW Shelf of Australia[C]//Western Australian Basins Symposium 2013. Perth: Petroleum Exploration Society of Australia, 2013. |
[34] | Gee M J R, Gawthorpe R L, Friedmann J S. Giant striations at the base of a submarine landslide [J]. Marine Geology, 2005, 214(1-3): 287-294. doi: 10.1016/j.margeo.2004.09.003 |
[35] | Lastras G, De Blasio F V, Canals M, et al. Conceptual and numerical modeling of the BIG'95 debris flow, Western Mediterranean Sea [J]. Journal of Sedimentary Research, 2005, 75(5): 784-797. doi: 10.2110/jsr.2005.063 |
[36] | Wu N, Jackson C A L, Johnson H D, et al. The formation and implications of giant blocks and fluid escape structures in submarine lateral spreads [J]. Basin Research, 2021, 33(3): 1711-1730. doi: 10.1111/bre.12532 |
[37] | Wu N, Jackson C A L, Johnson H D, et al. Lithological, petrophysical, and seal properties of mass-transport complexes, northern Gulf of Mexico [J]. AAPG Bulletin, 2021, 105(7): 1461-1489. doi: 10.1306/06242019056 |
[38] | Gafeira J, Bulat J, Evans D. The southern flank of the Storegga Slide: imaging and geomorphological analyses using 3D seismic[M]//Lykousis V, Sakellariou D, Locat J. Submarine Mass Movements and Their Consequences. Dordrecht: Springer, 2007, 27: 57-65. |
[39] | Gee M J R, Gawthorpe R L, Friedmann S J. Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology[J]. Journal of sedimentary research, 2006, 76(1): 9-19. |
[40] | Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: Implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235. doi: 10.1306/09011514210 |
[41] | 姚哲, 朱继田, 左倩媚, 等. 琼东南盆地深水区重力流沉积体系及油气勘探前景[J]. 天然气工业, 2015, 35(10):21-30 doi: 10.3787/j.issn.1000-0976.2015.10.003 YAO Zhe, ZHU Jitian, ZUO Qianmei, et al. Gravity flow sedimentary system and petroleum exploration prospect of deep water area in the Qiongdongnan Basin South, China Sea [J]. Natural Gas Industry, 2015, 35(10): 21-30. doi: 10.3787/j.issn.1000-0976.2015.10.003 |
[42] | Zabanbark A, Lobkovsky L I. Continental slopes of the West Africa Region: A unique treasure of hydrocarbons [J]. Oceanology, 2018, 58(5): 727-736. doi: 10.1134/S000143701805017X |
[43] | Le A N. Mass-transport deposit in deep water setting, offshore Cameroon, West Africa [J]. Indonesian Journal on Geoscience, 2021, 8(2): 213-219. |
[44] | Lisitsyn A P. Patterns of rapid and extremely rapid (avalanche) sedimentation: implications for marine oil and gas generation [J]. Russian Geology & Geophysics, 2009, 50(4): 278-298. |
[45] | Allen J, Schwartz K, Desantis J, et al. Integration of structure and stratigraphy in bone spring tight oil sandstones using 3D seismic in the Delaware Basin, TX[C]//Unconventional Resources Technology Conference. Denver, Colorado: SEG, 2013: 2521-2527. |
[46] | Bhatnagar P, Verma S, Bianco R. Characterization of mass transport deposits using seismic attributes: Upper Leonard Formation, Permian Basin [J]. Interpretation, 2019, 7(4): SK19-SK32. doi: 10.1190/INT-2019-0036.1 |
[47] | Qin Y P, Alves T M, Constantine J, et al. The role of mass wasting in the progressive development of submarine channels (Espírito Santo Basin, Se Brazil) [J]. Journal of Sedimentary Research, 2017, 87(5): 500-516. doi: 10.2110/jsr.2017.18 |
[48] | Henry L C, Wadsworth J A, Hansen B, et al. Erosion and ponding of Thunder Horse deepwater turbidites by mass transport complexes in Mississippi Canyon based on image log sedimentology [J]. Marine and Petroleum Geology, 2018, 97: 639-658. doi: 10.1016/j.marpetgeo.2018.08.006 |
[49] | 姚根顺, 袁圣强, 马玉波, 等. 琼东南华光凹陷深水重力搬运沉积体系及其油气勘探[J]. 地球科学:中国地质大学学报, 2009, 34(3):471-476 doi: 10.3799/dqkx.2009.052 YAO Genshun, YUAN Shengqiang, MA Yubo, et al. Deepwater mass transport deposition system of Huaguang depression, Qiongdongnan Basin and its significance for hydrocarbon exploration [J]. Earth Science:Journal of China University of Geosciences, 2009, 34(3): 471-476. doi: 10.3799/dqkx.2009.052 |
[50] | 陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6):40-45 doi: 10.16028/j.1009-2722.2012.06.008 CHEN Shanshan, SUN Yunbao, WU Shiguo. Sea bottom landslide in the Shenhu area on the north margin of South China Sea and triggering mechanisms [J]. Marine Geology Frontiers, 2012, 28(6): 40-45. doi: 10.16028/j.1009-2722.2012.06.008 |
[51] | Posamentier H W, Martinsen O J, Shipp R C, et al. The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data[M]//Mass-Transport Deposits in Deepwater Settings. Special Publication, Society for Sedimentary Geology, 2011, 96: 7-38. |
[52] | Alves T M, Kurtev K, Moore G F, et al. Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach[J]. AAPG Bulletin, 2014, 98(4): 793-824. |
[53] | Cardona S, Wood L J, Day-Stirrat R J, et al. Fabric development and pore-throat reduction in a mass-transport deposit in the Jubilee Gas Field, eastern Gulf of Mexico: consequences for the sealing capacity of MTDs[M]//Lamarche G, Mountjoy J, Bull S, et al. Submarine Mass Movements and their Consequences. Switzerland: Springer International Publishing, 2016, 41: 27-37. |
[54] | Cardona S, Wood L, Moscardelli L, et al. Cannibalization and sealing of deepwater reservoirs by mass-transport complexes: The Jubilee field, Gulf of Mexico [J]. Interpretation, 2020, 8(4): SV17-SV30. doi: 10.1190/INT-2019-0274.1 |
[55] | 赵芳. 南海北部陆缘裂后期岩浆活动及海底滑坡事件研究[D]. 中国科学院海洋研究所博士学位论文, 2016. ZHAO Fang. Post-rift magmatism and submarine landslides on the northern South China Sea continental margin[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2016. |
[56] | 杨木壮, 潘安定, 沙志彬. 陆缘地区天然气水合物成藏地质模式[J]. 海洋地质与第四纪地质, 2010, 30(6):85-90 YANG Muzhuang, PANG Anding, SHA Zhibin. Geological models of gas hydrates deposits along the continental margin [J]. Marine Geology & Quaternary Geology, 2010, 30(6): 85-90. |
[57] | 郭依群, 梁金强, 王宏斌, 等. 南海北部海底滑坡与天然气水合物的关系[C]//海洋地质、矿产资源与环境学术研讨会论文摘要集. 广州, 2006 GUO Yiqun, LIANG Jinqiang, WANG Hongbin, et al. Relationship between submarine landslides and gas hydrate in the northern South China Sea[C]//Abstracts of Seminar on Marine Geology, Mineral Resources & Environment. Guangzhou, 2006. |
[58] | 吴时国, 姚根顺, 董冬冬, 等. 南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J]. 石油学报, 2008, 29(3):324-328 doi: 10.3321/j.issn:0253-2697.2008.03.002 WU Shiguo, YAO Genshun, DONG Dongdong, et al. Geological structures for forming gas hydrate reservoir in the huge deepwater gas field of the northern South China Sea [J]. Acta Petrolei Sinica, 2008, 29(3): 324-328. doi: 10.3321/j.issn:0253-2697.2008.03.002 |
[59] | 蔡峰, 闫桂京, 梁杰, 等. 大陆边缘特殊地质体与水合物形成的关系[J]. 海洋地质前沿, 2011, 27(6):11-15 doi: 10.16028/j.1009-2722.2011.06.001 CAI Feng, YAN Guijing, LIANG Jie, et al. The relationship between special geological bodies and hydrate formation at continental margin [J]. Marine Geology Frontiers, 2011, 27(6): 11-15. doi: 10.16028/j.1009-2722.2011.06.001 |
[60] | Bünz S, Mienert J, Berndt C. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin [J]. Earth and Planetary Science Letters, 2003, 209(3-4): 291-307. doi: 10.1016/S0012-821X(03)00097-9 |
[61] | 吴时国, 董冬冬, 杨胜雄, 等. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J]. 地球物理学报, 2009, 52(7):1849-1857 doi: 10.3969/j.issn.0001-5733.2009.07.019 WU Shiguo, DONG Dongdong, YANG Shengxiong, et al. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea [J]. Chinese Journal of Geophysics, 2009, 52(7): 1849-1857. doi: 10.3969/j.issn.0001-5733.2009.07.019 |
[62] | 张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2):434-440 doi: 10.16539/j.ddgzyckx.2014.02.001 ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea [J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440. doi: 10.16539/j.ddgzyckx.2014.02.001 |
[63] | 杜浩, 石万忠, 梁金强, 等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探, 2021, 56(4):869-881 doi: 10.13810/j.cnki.issn.1000-7210.2021.04.020 DU Hao, SHI Wanzhong, LIANG Jinqiang, et al. Genesis of mass transport deposits and their effect on gas hydrate accumulation in the Qiongdongnan Basin [J]. Oil Geophysical Prospecting, 2021, 56(4): 869-881. doi: 10.13810/j.cnki.issn.1000-7210.2021.04.020 |
[64] | Alves T M. Megablocks and the stratigraphic record of continental margins: how large an event do they materialise?[C]//STRATI 2013. Switzerland: Springer International Publishing, 2014: 775-780. |
[65] | Talling P, Clare M, Urlaub M, et al. Large submarine landslides on continental slopes: Geohazards, methane release, and climate change [J]. Oceanography, 2014, 27(2): 32-45. doi: 10.5670/oceanog.2014.38 |
[66] | 刘杰, 杨睿, 邬黛黛, 等. 琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素[J]. 海洋学报, 2019, 41(8):13-25 LIU Jie, YANG Rui, WU Daidai, et al. Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin [J]. Haiyang Xuebao, 2019, 41(8): 13-25. |
[67] | 刘杰, 刘丽华, 吴能友, 等. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2):146-155 doi: 10.16562/j.cnki.0256-1492.2020061801 LIU Jie, LIU Lihua, WU Nengyou, et al. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801 |
[68] | Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea [J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z |
[69] | Maslin M, Owen M, Betts R, et al. Gas hydrates: past and future geohazard? [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. doi: 10.1098/rsta.2010.0065 |
[70] | Eldholm O, Bungum H. Potential secondary events caused by early Holocene paleoearthquakes in Fennoscandia: a climate-related review [J]. Norwegian Journal of Geology, 2021, 101: 202108. |
[71] | Paull C K, Brewer P G, Ussler W, et al. An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere [J]. Geo-Marine Letters, 2002, 22(4): 198-203. doi: 10.1007/s00367-002-0113-y |
[72] | Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: testing the clathrate gun hypothesis [J]. Geology, 2004, 32(1): 53-56. doi: 10.1130/G20114.1 |
[73] | Brothers D S, Luttrell K M, Chaytor J D. Sea-level-induced seismicity and submarine landslide occurrence [J]. Geology, 2013, 41(9): 979-982. doi: 10.1130/G34410.1 |
[74] | Yelisetti S, Spence G D, Riedel M. Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin [J]. Geophysical Journal International, 2014, 199(1): 441-458. doi: 10.1093/gji/ggu254 |
Multibeam bathymetry image of submarine spreading across the Storegga Slide[14]
Headwall scarps of submarine landslide and sliding direction of a submarine landslide[14]
Characteristics of seismic reflection at the head of submarine landslide[15]
The lateral margins and pressure ridges of a submarine landslide[31]
Basal shear surface of submarine landslide and its erosion[33]
Thrust faults inside submarine landslides[38]
Sandstone-rich transported blocks that can serve as reservoirs inside submarine landslides[37]
Submarine landslide can be used as oilfield top-seal[54]
Hydrate accumulation model of submarine landslide structure[56]