2022 Vol. 42, No. 6
Article Contents

YAN Yu, JIANG Fuqing, ZENG Zhigang, ZHENG Hao. Variation of clay mineral input in the Parece Vela Basin since the last 2.1 Ma and the response to the mid-Pleistocene climate transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 150-161. doi: 10.16562/j.cnki.0256-1492.2022071701
Citation: YAN Yu, JIANG Fuqing, ZENG Zhigang, ZHENG Hao. Variation of clay mineral input in the Parece Vela Basin since the last 2.1 Ma and the response to the mid-Pleistocene climate transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 150-161. doi: 10.16562/j.cnki.0256-1492.2022071701

Variation of clay mineral input in the Parece Vela Basin since the last 2.1 Ma and the response to the mid-Pleistocene climate transition

More Information
  • The composition and morphology of clay minerals collected from Core PV090102 in the Parece Vela Basin over the last 2.1 Ma were analyzed. Results show that the clays are mainly composed of illite (48% on average) and smectite (34%), and chlorite (13%) and kaolinite (6%). The illite crystallinity (0.29°Δ2θ) indicates that illite is mainly derived from cold and dry terrestrial regions; and the illite chemical index (0.32) implies that illite is rich in Fe-Mg and has experienced strong physical weathering. The clay mineral assemblage and morphological characteristics reflect that smectite is mainly derived from surrounding volcanic islands, while illite, chlorite, and kaolinite from Asian dust. The mass accumulation rates (MARs) of illite, chlorite, and kaolinite in Core PV090102 increased during mid-Pleistocene, which is consistent with the increase of MARs of eolian dust quartz in the Parece Vela Basin and Asia continent, suggesting that the MARs of illite, chlorite, and kaolinite in the Parece Vela Basin responded to the aridification in Asia during the mid-Pleistocene. Therefore, the MARs of illite, chlorite, and kaolinite in the Parece Vela Basin can be used to trace the paleoclimate change of Asian continent. In addition, variation of smectite MARs in Core PV090102 since the Quaternary is very consistent with the trend of volcanic material MARs in this core, and thus the variation can be used as a proxy of volcanic material input into the West Philippine Sea.

  • 加载中
  • [1] Scott R B, Kroenke L, Zakariadze G, et al. Evolution of the South Philippine Sea: deep sea drilling project leg 59 results[C]//Kroenke L, Scott R B, Balshaw K, et al. Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Government Printing Office, 1981: 803-815.

    Google Scholar

    [2] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid- Pleistocene inferred from radiogenic Sr and Nd isotopes [J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011

    CrossRef Google Scholar

    [3] Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159. doi: 10.1016/j.palaeo.2012.02.015

    CrossRef Google Scholar

    [4] Ming J, Li A C, Huang J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma [J]. Chinese Journal of Oceanology and Limnology, 2014, 32(1): 174-186. doi: 10.1007/s00343-014-3066-x

    CrossRef Google Scholar

    [5] Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: new insights from high-resolution clay mineral records in the West Philippine Sea [J]. Earth and Planetary Science Letters, 2016, 446: 45-55. doi: 10.1016/j.jpgl.2016.04.022

    CrossRef Google Scholar

    [6] 周宇. 近2Ma帕里西—维拉海盆的风尘记录[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2014: 30

    Google Scholar

    ZHOU Yu. Asian dust record in the Parece Vela Basin over the last 2 Ma[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014: 30.

    Google Scholar

    [7] 石学法, 陈丽蓉, 李坤业, 等. 西菲律宾海西部海域粘土沉积物的成因矿物学研究[J]. 海洋地质与第四纪地质, 1995, 15(2):61-72 doi: 10.16562/j.cnki.0256-1492.1995.02.007

    CrossRef Google Scholar

    SHI Xuefa, CHEN Lirong, LI Kunye, et al. Study on minerageny of the clay sediment in the west of Philippine Sea [J]. Marine Geology & Quaternary Geology, 1995, 15(2): 61-72. doi: 10.16562/j.cnki.0256-1492.1995.02.007

    CrossRef Google Scholar

    [8] 刘华华, 蒋富清, 周烨, 等. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3):286-297 doi: 10.11867/j.issn.1001-8166.2016.03.0286.

    CrossRef Google Scholar

    LIU Huahua, JIANG Fuqing, ZHOU Ye, et al. Provenance of clay minerals in the Amami Sankaku Basin and their paleoclimate implications since Late Pleistocene [J]. Advances in Earth Science, 2016, 31(3): 286-297. doi: 10.11867/j.issn.1001-8166.2016.03.0286.

    CrossRef Google Scholar

    [9] 杨佳毅, 蒋富清, 颜钰, 等. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4):73-83

    Google Scholar

    YANG Jiayi, JIANG Fuqing, YAN Yu, et al. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene [J]. Earth Science Frontiers, 2022, 29(4): 73-83.

    Google Scholar

    [10] 靳宁, 李安春, 刘海志, 等. 帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析[J]. 海洋与湖沼, 2007, 38(6):504-511 doi: 10.3321/j.issn:0029-814x.2007.06.004

    CrossRef Google Scholar

    JIN Ning, LI Anchun, LIU Haizhi, et al. Clay minerals in surface sediment of the northwest Parece Vela Basin: distribution and provenance [J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511. doi: 10.3321/j.issn:0029-814x.2007.06.004

    CrossRef Google Scholar

    [11] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025

    CrossRef Google Scholar

    [12] 肖春晖, 王永红, 林间. 近1Ma以来帕里西维拉海盆沉积物物源和古气候: 粒度和黏土矿物特征的指示[J]. 沉积学报, 2022, 40(2):508-524

    Google Scholar

    XIAO Chunhui, WANG Yonghong, LIN Jian. Provenance and paleoclimate of sediments in the Parece Vela Basin in past 1 Ma: inferences from grain -size and clay mineral distribution [J]. Acta Sedimentologica Sinica, 2022, 40(2): 508-524.

    Google Scholar

    [13] Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2009, 56(10): 1675-1687. doi: 10.1016/j.dsr.2009.06.003

    CrossRef Google Scholar

    [14] Lee I, Ogawa Y. Bottom-current deposits in the Miocene-Pliocene Misaki Formation, Izu forearc area, Japan [J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x

    CrossRef Google Scholar

    [15] 孟庆勇, 李安春, 蒋富清, 等. 近2 Ma来东菲律宾海地球磁场相对强度变化的沉积记录[J]. 海洋与湖沼, 2010, 41(4):606-613 doi: 10.11693/hyhz201004021021

    CrossRef Google Scholar

    MENG Qingyong, LI Anchun, JIANG Fuqing, et al. A geomagnetic paleointensity record over the last 2Ma from the east Philippine Sea [J]. Oceanologia et Limnologia Sinica, 2010, 41(4): 606-613. doi: 10.11693/hyhz201004021021

    CrossRef Google Scholar

    [16] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and oceans [J]. GSA Bulletin, 1965, 76(7): 803-825. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CrossRef Google Scholar

    [17] Ehrmann W. Implications of Late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3-4): 213-231. doi: 10.1016/S0031-0182(97)00138-7

    CrossRef Google Scholar

    [18] Chamley H. Clay Sedimentology[M]. Berlin: Springer, 1989: 1-623.

    Google Scholar

    [19] 杨雅秀, 张乃娴, 苏昭冰, 等. 中国粘土矿物[M]. 北京: 地质出版社, 1994: 143-150

    Google Scholar

    YANG Yaxiu, ZHANG Naixian, SU Zhaobing, et al. Clay Minerals of China[M]. Beijing: Geological Publishing House, 1994: 143-150.

    Google Scholar

    [20] 师育新, 戴雪荣, 李节通, 等. 末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨[J]. 海洋地质与第四纪地质, 1997, 17(1):87-94 doi: 10.16562/j.cnki.0256-1492.1997.01.013

    CrossRef Google Scholar

    SHI Yuxin, DAI Xuerong, LI Jietong, et al. Origin and significance of clay minerals in the last interglacial loess in Lanzhou area, North Central China [J]. Marine Geology & Quaternary Geology, 1997, 17(1): 87-94. doi: 10.16562/j.cnki.0256-1492.1997.01.013

    CrossRef Google Scholar

    [21] 师育新, 戴雪荣, 宋之光, 等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报, 2005, 23(4):690-695 doi: 10.3969/j.issn.1000-0550.2005.04.019

    CrossRef Google Scholar

    SHI Yuxin, DAI Xuerong, SONG Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of Chinese loess in different climatic zones [J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695. doi: 10.3969/j.issn.1000-0550.2005.04.019

    CrossRef Google Scholar

    [22] 郑洪汉. 中国黄土中粘土矿物的古气候记录[J]. 第四纪研究, 1985, 6(2):41-47

    Google Scholar

    ZHENG Honghan. Paleoclimatic records of clay minerals in loess, China [J]. Quaternary Sinica, 1985, 6(2): 41-47.

    Google Scholar

    [23] Wan S M, Li A C, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

    CrossRef Google Scholar

    [24] Liu Z F, Tuo S T, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation [J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003

    CrossRef Google Scholar

    [25] 李传顺, 石学法, 高树基, 等. 台湾河流沉积物的黏土矿物组成特征与物质来源[J]. 科学通报, 2012, 57(6):673-681 doi: 10.1007/s11434-011-4824-1

    CrossRef Google Scholar

    LI Chuanshun, SHI Xuefa, GAO Shuji, et al. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers [J]. Chinese Science Bulletin, 2012, 57(6): 673-681. doi: 10.1007/s11434-011-4824-1

    CrossRef Google Scholar

    [26] 郑智睿. 南冲绳海槽表层沉积物中黏土矿物之研究[D]. 台湾大学海洋研究所硕士学位论文, 2008: 23-46

    Google Scholar

    ZHENG Zhirui. Clay mineral distribution in surface sediments of the southern Okinawa Trough[D]. Master Dissertation of Institute of Oceanography, National Taiwan University, 2008: 23-46.

    Google Scholar

    [27] Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea [J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    CrossRef Google Scholar

    [28] Nagel U, Müller G, Schumann D, et al. Mineralogy of sediments cored during deep sea drilling project legs 58-60 in the north and south Philippine Sea: results of X-ray diffraction analyses[C]//Hussong D M, Uyeda S, Blanchet R, et al. Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Government Printing Office, 1981: 415-435.

    Google Scholar

    [29] Underwood M B, Orr R, Pickering K, et al. Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough[C]//Hill I A, Taira A, Firth J V, et al. Proceedings of the Ocean Drilling Program. Scientific Results, 1993: 15-34.

    Google Scholar

    [30] Shen X Y, Wan S M, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling? [J]. Earth and Planetary Science Letters, 2017, 474: 296-308. doi: 10.1016/j.jpgl.2017.06.053

    CrossRef Google Scholar

    [31] 张德玉. 马里亚纳海槽区粘土矿物组成及分布特征[J]. 黄渤海海洋, 1994, 12(2):32-39

    Google Scholar

    ZHANG Deyu. Clay mineral composition and distribution in the Mariana Trough [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1994, 12(2): 32-39.

    Google Scholar

    [32] Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments [J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025

    CrossRef Google Scholar

    [33] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 81-92

    Google Scholar

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987: 81-92.

    Google Scholar

    [34] Ji J F, Chen J, Lu H Y. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China [J]. Clay Minerals, 1999, 34(4): 525-532. doi: 10.1180/000985599546398

    CrossRef Google Scholar

    [35] Aoki S, Kohyama N, Ishizuka T. Sedimentary history and chemical characteristics of clay minerals in cores from the distal part of the Bengal Fan (ODP 116) [J]. Marine Geology, 1991, 99(1-2): 175-185. doi: 10.1016/0025-3227(91)90090-Q

    CrossRef Google Scholar

    [36] Aoki S, Kohyama N. The vertical change in clay mineral composition and chemical characteristics of smectite in sediment cores from the southern part of the Central Pacific Basin [J]. Marine Geology, 1991, 98(1): 41-49. doi: 10.1016/0025-3227(91)90034-2

    CrossRef Google Scholar

    [37] Aoki S, Kohyama N. Modern sedimentation in the Japan Trench: implications of the mineralogy and chemistry of clays sampled from sediment traps [J]. Marine Geology, 1992, 108(2): 197-208. doi: 10.1016/0025-3227(92)90172-E

    CrossRef Google Scholar

    [38] Windom H L. Lithogenous material in marine sediments[M]//Riley J P, Chester R. Chemical Oceanography. 2nd ed. London: Academic Press, 1976: 103-135.

    Google Scholar

    [39] Kolla V, Nadler L, Bonatti E. Clay mineral distributions in surface sediments of the Philippine Sea [J]. Oceanologica Acta, 1980, 3(2): 245-250.

    Google Scholar

    [40] Yan Y, Jiang F Q, Zeng Z G, et al. Response of eolian quartz flux and grain size in the Parece Vela Basin sediment to the mid-Pleistocene transition [J]. Journal of Asian Earth Sciences, 2022, 236: 105332. doi: 10.1016/j.jseaes.2022.105332

    CrossRef Google Scholar

    [41] Cai M T, Fang X M, Wu F L, et al. Pliocene-Pleistocene stepwise drying of Central Asia: Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau [J]. Global and Planetary Change, 2012, 94-95: 72-81. doi: 10.1016/j.gloplacha.2012.07.002

    CrossRef Google Scholar

    [42] Han W X, Fang X M, Berger A. Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record [J]. Quaternary Research, 2012, 78(2): 174-184. doi: 10.1016/j.yqres.2012.05.001

    CrossRef Google Scholar

    [43] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.

    Google Scholar

    [44] Patterson D B, Farley K A, Norman M D. 4He as a tracer of continental dust: A 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 615-625. doi: 10.1016/S0016-7037(99)00077-0

    CrossRef Google Scholar

    [45] Martínez-García A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust–climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(2063) PDF downloads(50) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint