2022 Vol. 42, No. 6
Article Contents

JIANG Xue, XIONG Zhiwu. Semi-quantitative study on reservoir configuration in grey theory—A case study of H3 sand unit of Huagang Formation in A Structure, Xihu Sag[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 162-172. doi: 10.16562/j.cnki.0256-1492.2022022301
Citation: JIANG Xue, XIONG Zhiwu. Semi-quantitative study on reservoir configuration in grey theory—A case study of H3 sand unit of Huagang Formation in A Structure, Xihu Sag[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 162-172. doi: 10.16562/j.cnki.0256-1492.2022022301

Semi-quantitative study on reservoir configuration in grey theory—A case study of H3 sand unit of Huagang Formation in A Structure, Xihu Sag

  • Using grey theory, we calculated quantitatively the comprehensive evaluation index IRE of the interlayer in Huagang Formation (Fm) of the A Structure in the Xihu Sag, China Sea, from which the type of interlayer in thick-bedded sandstone was identified and the channel period was divided. Combing logging data and lithofacies associations, we clarified the strength of hydrodynamic force, divided the reservoir types, and then defined influencing factors of high-quality reservoir development. In addition, based on single channel identification and classification, the average thickness of single interlaced strata was determined, and the river width-thickness ratio and sand-soil ratio were calculated to semi-quantitatively characterize the river connectivity and distribution characteristics. Based on the influencing factors and channel distribution characteristics of high-quality reservoirs, the development area of high-quality reservoirs was predicted. Results show that there are two types of interlayers in Huagang Fm of the A Structure, namely, desilting stratum and mudstone interlayer. The desilting stratum with low IRE was 24~45, and that of the mudstone layer was 51~110, much greater, thus the three sets of single channel sand bodies in 10 stages were identified in the H3 sand unit of Huagang Fm. The width-thickness ratio of single channel in the work area was 38.87, and the range of channel distribution in each period was calculated to be 1.1~2.3 km. The channel sand bodies are almost overlapped. Under the guidance of seismic composite microfacies, the early channel of Huagang Fm was identified and tracked. Combined with the distribution characteristics of sedimentary microfacies, coarse-grained facies zoning, and diagenesis development, we considered that the favorable reservoirs are more developed in the south area of the A Structure.

  • 加载中
  • [1] 于兴河, 马兴详, 穆龙新, 等. 辫状河储层地质模式及层次界面分析[M]. 北京: 石油工业出版社, 2004.

    Google Scholar

    YU Xinghe, MA Xingxiang, MU Longxin, et al. Reservoir Geology Model and Analysis of Hierarchy Surface[M]. Beijing: Petroleum Industry Press, 2004.

    Google Scholar

    [2] Lynds R, Hajek E. Conceptual model for predicting mudstone dimensions in sandy braided-river reservoirs [J]. AAPG Bulletin, 2006, 90(8): 1273-1288. doi: 10.1306/03080605051

    CrossRef Google Scholar

    [3] 印森林, 吴胜和, 冯文杰, 等. 冲积扇储集层内部隔夹层样式: 以克拉玛依油田一中区克下组为例[J]. 石油勘探与开发, 2013, 40(6):757-763 doi: 10.11698/PED.2013.06.18

    CrossRef Google Scholar

    YIN Senlin, WU Shenghe, FENG Wenjie, et al. Patterns of inter-layers in the alluvial fan reservoirs: A case study on Triassic Lower Karamay Formation, Yizhong Area, Karamay Oilfield, NW China [J]. Petroleum Exploration and Development, 2013, 40(6): 757-763. doi: 10.11698/PED.2013.06.18

    CrossRef Google Scholar

    [4] 渠芳, 陈清华, 连承波. 河流相储层构型及其对油水分布的控制[J]. 中国石油大学学报:自然科学版, 2008, 32(3):14-18

    Google Scholar

    QU Fang, CHEN Qinghua, LIAN Chengbo. Fluvial facies reservoir architecture and its control over the distribution of oil and water [J]. Journal of China University of Petroleum, 2008, 32(3): 14-18.

    Google Scholar

    [5] Thorne C R, Russell A P G, Alam M K. Planform pattern and channel evolution of the Brahmaputra river, Bangladesh[M]//Best J L, Bristow C S. Braided Rivers. London: Geological Society of London, 1993: 257-276.

    Google Scholar

    [6] 陈清华, 曾明, 章凤奇, 等. 河流相储层单一河道的识别及其对油田开发的意义[J]. 油气地质与采收率, 2004, 11(3):13-15 doi: 10.3969/j.issn.1009-9603.2004.03.005

    CrossRef Google Scholar

    CHEN Qinghua, ZENG Ming, ZHANG Fengqi, et al. Identification of single channel in fluvial reservoir and its significance to the oilfield development [J]. Petroleum Geology and Recovery Efficiency, 2004, 11(3): 13-15. doi: 10.3969/j.issn.1009-9603.2004.03.005

    CrossRef Google Scholar

    [7] 白振强. 辫状河砂体三维构型地质建模研究[J]. 西南石油大学学报:自然科学版, 2010, 32(6):21-24

    Google Scholar

    BAI Zhenqiang. Study on the 3D architecture geological modeling of braided fluvial sandbody [J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010, 32(6): 21-24.

    Google Scholar

    [8] 蒋一鸣, 何新建, 张绍亮. 东海陆架盆地“反转改造”构造迁移演化特征: 以西湖凹陷边缘构造为例[J]. 长江大学学报:自科版, 2016, 13(26):1-7

    Google Scholar

    JIANG Yiming, HE Xinjian, ZHANG Shaoliang. The characteristics of “Inverse-transform” tectonic migration evolution of the East China Sea Shelf basin: by taking the marginal structure of Xihu sag for example [J]. Journal of Yangtze University:Natural Science Edition, 2016, 13(26): 1-7.

    Google Scholar

    [9] 郭真, 刘池洋, 田建锋. 东海陆架盆地龙井运动构造影响及其发育背景[J]. 西北大学学报:自然科学版, 2015, 45(5):801-810

    Google Scholar

    GUO Zhen, LIU Chiyang, TIAN Jianfeng. Longjing movement structural effect and developmental background in East China Sea basin [J]. Journal of Northwest University:Natural Science Edition, 2015, 45(5): 801-810.

    Google Scholar

    [10] 李顺利, 许磊, 于兴河, 等. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征[J]. 古地理学报, 2018, 20(6):1023-1032 doi: 10.7605/gdlxb.2018.06.075

    CrossRef Google Scholar

    LI Shunli, XU Lei, YU Xinghe, et al. Marine transgressions and characteristics of tide-dominated sedimentary systems in the Oligocene, Xihu sag, East China Sea Shelf Basin [J]. Journal of Palaeogeography, 2018, 20(6): 1023-1032. doi: 10.7605/gdlxb.2018.06.075

    CrossRef Google Scholar

    [11] 张建培, 余逸凡, 张田, 等. 东海西湖凹陷深盆气勘探前景探讨[J]. 中国海上油气, 2013, 25(2):24-29, 35

    Google Scholar

    ZHANG Jianpei, YU Yifan, ZHANG Tian, et al. A discussion on the exploration potential of deep basin gas in Xihu sag, East China Sea [J]. China Offshore Oil and Gas, 2013, 25(2): 24-29, 35.

    Google Scholar

    [12] 王果寿, 周卓明, 肖朝辉, 等. 西湖凹陷春晓区带下第三系平湖组、花港组沉积特征[J]. 石油与天然气地质, 2002, 23(3):257-261, 265 doi: 10.3321/j.issn:0253-9985.2002.03.012

    CrossRef Google Scholar

    WANG Guoshou, ZHOU Zhuoming, XIAO Chaohui, et al. Sedimentary characteristics of Eugene Pinghu formation and Huagang formation in Chunxiao Zone of Xihu lake depression [J]. Oil & Gas Geology, 2002, 23(3): 257-261, 265. doi: 10.3321/j.issn:0253-9985.2002.03.012

    CrossRef Google Scholar

    [13] 张银国. 东海西湖凹陷花港组油气地质条件与油气分布规律[J]. 石油实验地质, 2010, 32(3):223-226,231 doi: 10.3969/j.issn.1001-6112.2010.03.004

    CrossRef Google Scholar

    ZHANG Yinguo. Petroleum geology and hydrocarbon distribution pattern of Huagang Formation in the Xihu sag of the East China Sea [J]. Petroleum Geology & Experiment, 2010, 32(3): 223-226,231. doi: 10.3969/j.issn.1001-6112.2010.03.004

    CrossRef Google Scholar

    [14] 陈哲, 张昌民, 侯国伟, 等. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制[J]. 石油与天然气地质, 2020, 41(4):824-837 doi: 10.11743/ogg20200415

    CrossRef Google Scholar

    CHEN Zhe, ZHANG Changmin, HOU Guowei, et al. Fault distribution patterns and their control on sand bodies in Pinghu Formation of Xihu Sag in East China Sea Shelf Basin [J]. Oil & Gas Geology, 2020, 41(4): 824-837. doi: 10.11743/ogg20200415

    CrossRef Google Scholar

    [15] 苏奥, 贺聪, 陈红汉, 等. 构造反转对西湖凹陷中部油气成藏的控制作用[J]. 特种油气藏, 2016, 23(3):75-78,147 doi: 10.3969/j.issn.1006-6535.2016.03.017

    CrossRef Google Scholar

    SU Ao, HE Cong, CHEN Honghan, et al. Effect of tectonic inversion on hydrocarbon accumulation in the central area of Xihu depression [J]. Special Oil & Gas Reservoirs, 2016, 23(3): 75-78,147. doi: 10.3969/j.issn.1006-6535.2016.03.017

    CrossRef Google Scholar

    [16] 梁若冰, 李玉珍, 李纯洁, 等. 平湖油气田地质特征与勘探方向[J]. 海洋石油, 2008, 28(2):7-13, 57 doi: 10.3969/j.issn.1008-2336.2008.02.002

    CrossRef Google Scholar

    LIANG Ruobing, LI Yuzhen, LI Chunjie, et al. Geological characteristics and exploration targets of Pinghu oilfield [J]. Offshore Oil, 2008, 28(2): 7-13, 57. doi: 10.3969/j.issn.1008-2336.2008.02.002

    CrossRef Google Scholar

    [17] 钟志洪, 张建培, 孙珍, 等. 西湖凹陷黄岩区地质演化及断层对油气运聚的影响[J]. 海洋石油, 2003, 23(S1):30-35

    Google Scholar

    ZHONG Zhihong, ZHANG Jianpei, SUN Zhen, et al. Geological evolution of Huangyan area in Xihu sag and the influence of oil and gas migration in fault zone [J]. Offshore Oil, 2003, 23(S1): 30-35.

    Google Scholar

    [18] 秦兰芝, 刘金水, 李帅, 等. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义[J]. 石油实验地质, 2017, 39(4):498-504, 526 doi: 10.11781/sysydz201704498

    CrossRef Google Scholar

    QIN Lanzhi, LIU Jinshui, LI Shuai, et al. Characteristics of zircon in the Huagang Formation of the central inversion zone of Xihu Sag and its provenance indication [J]. Petroleum Geology & Experiment, 2017, 39(4): 498-504, 526. doi: 10.11781/sysydz201704498

    CrossRef Google Scholar

    [19] 陈波, 李文俊, 丁芳, 等. 基于地震波形结构特征的分流河道砂体储层构型[J]. 石油地质与工程, 2021, 35(6):1-6 doi: 10.3969/j.issn.1673-8217.2021.06.001

    CrossRef Google Scholar

    CHEN Bo, LI Wenjun, DING Fang, et al. Reservoir configuration of distributary channel sand body based on the structural features of seismic waveforms [J]. Petroleum Geology and Engineering, 2021, 35(6): 1-6. doi: 10.3969/j.issn.1673-8217.2021.06.001

    CrossRef Google Scholar

    [20] 刘玉娟, 郑彬, 李红英, 等. 渤海A油田大厚层油藏储层构型研究[J]. 石油地质与工程, 2018, 32(6):16-20 doi: 10.3969/j.issn.1673-8217.2018.06.004

    CrossRef Google Scholar

    LIU Yujuan, ZHENG Bin, LI Hongying, et al. Study on reservoir configuration of large thick reservoirs in Bohai A Oilfield [J]. Petroleum Geology and Engineering, 2018, 32(6): 16-20. doi: 10.3969/j.issn.1673-8217.2018.06.004

    CrossRef Google Scholar

    [21] 孙天建, 穆龙新, 赵国良. 砂质辫状河储集层隔夹层类型及其表征方法: 以苏丹穆格莱特盆地Hegli油田为例[J]. 石油勘探与开发, 2014, 41(2):112-120

    Google Scholar

    SUN Tianjian, MU Longxin, ZHAO Guoliang. Classification and characterization of barrier-intercalation in sandy braided river reservoirs: Taking Hegli Oilfield of Muglad Basin in Sudan as an example [J]. Petroleum Exploration and Development, 2014, 41(2): 112-120.

    Google Scholar

    [22] 宋子齐, 谭成仟, 曲政. 利用灰色理论精细评价油气储层的方法[J]. 石油学报, 1996, 17(1):25-31 doi: 10.7623/syxb199601004

    CrossRef Google Scholar

    SONG Ziqi, TAN Chengqian, QU Zheng. Utilizing exact grey theory to evaluate oil and gas formation [J]. Acta Petrolei Sinica, 1996, 17(1): 25-31. doi: 10.7623/syxb199601004

    CrossRef Google Scholar

    [23] Bridge J S. Fluvial facies models: Recent developments[M]//Posamentier H W, Walker R G. Facies Models Revisited. Tulsa: Society for Sedimentary Geology, 2006: 83-168.

    Google Scholar

    [24] Bridge J S, Tye R S. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores [J]. AAPG Bulletin, 2000, 84(8): 1205-1228.

    Google Scholar

    [25] Kelly S. Scaling and hierarchy in braided rivers and their deposits: Examples and implications for reservoir modelling[M]//Smith G H S, Best J L, Bristow C S, et al. Braided Rivers: Process, Deposits, Ecology and Management. Oxford, UK: International Association of Sedimentologists, 2006: 75-106.

    Google Scholar

    [26] 金振奎, 杨有星, 尚建林, 等. 辫状河砂体构型及定量参数研究: 以阜康、柳林和延安地区辫状河露头为例[J]. 天然气地球科学, 2014, 25(3):311-317

    Google Scholar

    JIN Zhenkui, YANG Youxing, SHANG Jianlin, et al. Sandbody architecture and quantitative parameters of single channel sandbodies of braided river: cases from outcrops of braided river in Fukang, Liulin and Yanan areas [J]. Natural Gas Geoscience, 2014, 25(3): 311-317.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(1780) PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint