2023 Vol. 43, No. 1
Article Contents

HE Wen, CAO Yuncheng, CHEN Duofu. Modelling of triggering of Orca submarine landslide, Cascadia margin, northeast Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 180-189. doi: 10.16562/j.cnki.0256-1492.2022050701
Citation: HE Wen, CAO Yuncheng, CHEN Duofu. Modelling of triggering of Orca submarine landslide, Cascadia margin, northeast Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 180-189. doi: 10.16562/j.cnki.0256-1492.2022050701

Modelling of triggering of Orca submarine landslide, Cascadia margin, northeast Pacific

More Information
  • Bottom-water temperature variations and eustatic sea-level fluctuations may cause decomposition of marine gas hydrate and excess pore pressure in sediment, which leads to a subsequent decrease in effective stress of the sediment, and eventually results in submarine landslides. A numerical modeling of the mechanism of such slope failure was developed herein, and was applied to the study of Orca Slide that occurred between 14 and 9 kaBP on the Cascadia margin in the northeast Pacific. The modeling results show that with the rising sea level in the last 18 ka, the base of hydrate stability zone (BHSZ) experienced a fast upward movement whose rising rate peaked to 1.18 m/ka at 13.7 kaBP due to continuous bottom-water warming during 18~14 kaBP. Meanwhile, an excess pore pressure of 114 kPa was formed in the coarse-grained layers in the BHSZ of Orca Slide as a result of gas hydrate decomposition, which then significantly reduced the factor of safety of the strata to less than 1, thereby triggering the submarine landslides. Therefore, highly saturated hydrate decomposition caused by the bottom-water temperature rise may be the main triggering mechanism of Orca submarine landslide.

  • 加载中
  • [1] Nisbet E G, Piper D J W. Giant submarine landslides [J]. Nature, 1998, 392(6674): 329-330. doi: 10.1038/32765

    CrossRef Google Scholar

    [2] Luo M, Torres M E, Kasten S, et al. Constraining the age and evolution of the Tuaheni landslide complex, Hikurangi Margin, New Zealand, using pore-water geochemistry and numerical modeling [J]. Geophysical Research Letters, 2020, 47(11): e2020GL087243.

    Google Scholar

    [3] Wharton W J L, Geikie A, Perry P, et al. Sub-oceanic changes: discussion [J]. The Geographical Journal, 1897, 10(3): 285-289. doi: 10.2307/1774772

    CrossRef Google Scholar

    [4] Herzer R H. Uneven submarine topography south of Mernoo Gap—the result of volcanism and submarine sliding [J]. New Zealand Journal of Geology and Geophysics, 1975, 18(1): 183-188. doi: 10.1080/00288306.1975.10426354

    CrossRef Google Scholar

    [5] Barrier A, Bischoff A, Nicol A, et al. Relationships between volcanism and plate tectonics: a case-study from the Canterbury Basin, New Zealand [J]. Marine Geology, 2021, 433: 106397. doi: 10.1016/j.margeo.2020.106397

    CrossRef Google Scholar

    [6] McIver R D. Role of naturally occurring gas hydrates in sediment transport [J]. AAPG Bulletin, 1982, 66(6): 789-792.

    Google Scholar

    [7] Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation [J]. Nature Communications, 2018, 9(1): 715. doi: 10.1038/s41467-018-03176-1

    CrossRef Google Scholar

    [8] 唐常锐, 徐秀刚, 孙秉才, 等. 天然气水合物分解诱发海底滑坡影响因素分析及致灾风险评价[J]. 海洋地质前沿, 2021, 37(5):14-21 doi: 10.16028/j.1009-2722.2021.021

    CrossRef Google Scholar

    TANG Changrui, XU Xiugang, SUN Bingcai, et al. Influence factors and risk assessment for seabed landslides induced by natural gas hydrate decomposition [J]. Marine Geology Frontiers, 2021, 37(5): 14-21. doi: 10.16028/j.1009-2722.2021.021

    CrossRef Google Scholar

    [9] Hance J J. Development of a database and assessment of seafloor slope stability based on published literature[D]. Doctor Dissertation of University of Texas, 2003.

    Google Scholar

    [10] Mulder T, Cochonat P. Classification of offshore mass movements [J]. Journal of Sedimentary Research, 1996, 66(1): 43-57.

    Google Scholar

    [11] Locat J, Lee H, Kayen R, et al. Shear strength development with burial in eel river margin slope sediments [J]. Marine Georesources & Geotechnology, 2002, 20(2): 111-135.

    Google Scholar

    [12] 秦志亮, 孙思军, 谭骏, 等. 西沙群岛海域海洋地质灾害现状与对策[J]. 海洋开发与管理, 2014, 31(9):12-16 doi: 10.3969/j.issn.1005-9857.2014.09.03t

    CrossRef Google Scholar

    QIN Zhiliang, SUN Sijun, TAN Jun, et al. Current situation and countermeasures of marine geological disasters in the Xisha Paracel Islands [J]. Ocean Development and Management, 2014, 31(9): 12-16. doi: 10.3969/j.issn.1005-9857.2014.09.03t

    CrossRef Google Scholar

    [13] Chen Y M, Zhang L L, Liao C C, et al. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation [J]. Applied Ocean Research, 2020, 99: 102158. doi: 10.1016/j.apor.2020.102158

    CrossRef Google Scholar

    [14] 陈泓君, 黄磊, 彭学超, 等. 南海西北陆坡天然气水合物调查区滑坡带特征及成因探讨[J]. 热带海洋学报, 2012, 31(5):18-25 doi: 10.3969/j.issn.1009-5470.2012.05.004

    CrossRef Google Scholar

    CHEN Hongjun, HUANG Lei, PENG Xuechao, et al. Discussion of characteristics and formation of landslide zones in the gas hydrate survey area of northwest continental slope, the South China Sea [J]. Journal of Tropical Oceanography, 2012, 31(5): 18-25. doi: 10.3969/j.issn.1009-5470.2012.05.004

    CrossRef Google Scholar

    [15] Yang L L, Wang J, Jiang Y H. Experimental study and numerical simulation of overlying layer soil failure caused by hydrate decomposition [J]. ACS Omega, 2020, 5(48): 31244-31253. doi: 10.1021/acsomega.0c04619

    CrossRef Google Scholar

    [16] Dickens G R. The potential volume of oceanic methane hydrates with variable external conditions [J]. Organic Geochemistry, 2001, 32(10): 1179-1193. doi: 10.1016/S0146-6380(01)00086-9

    CrossRef Google Scholar

    [17] 陈多福, 姚伯初, 赵振华, 等. 珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J]. 海洋地质与第四纪地质, 2001, 21(4):73-78 doi: 10.16562/j.cnki.0256-1492.2001.04.014

    CrossRef Google Scholar

    CHEN Duofu, YAO Bochu, ZHAO Zhenhua, et al. Geochemical constraints and potential distributions of gas hydrates in Pearl River Mouth Basin and Qiongdongnan Basin in the northern margin of the South China Sea [J]. Marine Geology & Quaternary Geology, 2001, 21(4): 73-78. doi: 10.16562/j.cnki.0256-1492.2001.04.014

    CrossRef Google Scholar

    [18] 刘杰, 刘丽华, 吴能友, 等. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2):146-155 doi: 10.16562/j.cnki.0256-1492.2020061801

    CrossRef Google Scholar

    LIU Jie, LIU Lihua, WU Nengyou, et al. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801

    CrossRef Google Scholar

    [19] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability [J]. Marine Geology, 2004, 213(1-4): 379-401. doi: 10.1016/j.margeo.2004.10.015

    CrossRef Google Scholar

    [20] Sultan N, Marsset B, Ker S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B8): B08101.

    Google Scholar

    [21] 宋海斌. 天然气水合物体系动态演化研究(Ⅱ): 海底滑坡[J]. 地球物理学进展, 2003, 18(3):503-511 doi: 10.3969/j.issn.1004-2903.2003.03.028

    CrossRef Google Scholar

    SONG Haibin. Researches on dynamic evolution of gas hydrate system (Ⅱ): submarine slides [J]. Progress in Geophysics, 2003, 18(3): 503-511. doi: 10.3969/j.issn.1004-2903.2003.03.028

    CrossRef Google Scholar

    [22] Kayen R E, Lee H J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin [J]. Marine Geotechnology, 1991, 10(1-2): 125-141. doi: 10.1080/10641199109379886

    CrossRef Google Scholar

    [23] Hornbach M J, Lavier L L, Ruppel C D. Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U. S. Atlantic margin [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12): Q12008.

    Google Scholar

    [24] Leslie S C, Mann P. Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea [J]. Earth and Planetary Science Letters, 2016, 449: 382-394. doi: 10.1016/j.jpgl.2016.05.040

    CrossRef Google Scholar

    [25] 倪玉根, 夏真, 马胜中. 与天然气水合物分解有关的海底滑坡和气候突变事件[J]. 南海地质研究, 2013(1):73-81

    Google Scholar

    NI Yugen, XIA Zhen, MA Shengzhong. The submarine landslides and climate change events related to gas hydrate dissociation [J]. Gresearch of Eological South China Sea, 2013(1): 73-81.

    Google Scholar

    [26] Mienert J, Vanneste M, Bünz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 233-244. doi: 10.1016/j.marpetgeo.2004.10.018

    CrossRef Google Scholar

    [27] Guan H X, Liu L, Hu Y, et al. Rising bottom-water temperatures induced methane release during the middle Holocene in the Okinawa Trough, East China Sea [J]. Chemical Geology, 2022, 590: 120707. doi: 10.1016/j.chemgeo.2022.120707

    CrossRef Google Scholar

    [28] 李天赐, 孔亮, 赵新波, 等. 考虑超孔压影响的海底能源土斜坡稳定性数值模拟和评价[J]. 科学技术与工程, 2019, 19(5):253-260 doi: 10.3969/j.issn.1671-1815.2019.05.039

    CrossRef Google Scholar

    LI Tianci, KONG Liang, ZHAO Xinbo, et al. Numerical simulation and evaluation of the stability of submarine energy soil slope considering the effect of the excess pore pressure [J]. Science Technology and Engineering, 2019, 19(5): 253-260. doi: 10.3969/j.issn.1671-1815.2019.05.039

    CrossRef Google Scholar

    [29] Grozic J L H. Interplay between gas hydrates and submarine slope failure[M]//Mosher D C, Shipp R C, Moscardelli L, et al. Submarine Mass Movements and Their Consequences. Dordrecht: Springer, 2010: 11-30.

    Google Scholar

    [30] 宋晓帅, 孙志文, 朱超祁, 等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质, 2022, 42(1):222-235 doi: 10.16562/j.cnki.0256-1492.2021062701

    CrossRef Google Scholar

    SONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, et al. A review on deepwater landslide [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 222-235. doi: 10.16562/j.cnki.0256-1492.2021062701

    CrossRef Google Scholar

    [31] Grozic J L H, Kvalstad T J. Effect of gas on deepwater marine sediments[C]//Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering. 2001: 2289-2294.

    Google Scholar

    [32] Kwon T H, Cho G C, Santamarina J C. Gas hydrate dissociation in sediments: pressure-temperature evolution [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03019.

    Google Scholar

    [33] Nixon M F, Grozic J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quantification [J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325. doi: 10.1139/t06-121

    CrossRef Google Scholar

    [34] Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B1): B01104.

    Google Scholar

    [35] López C, Spence G, Hyndman R, et al. Frontal ridge slope failure at the northern Cascadia margin: margin-normal fault and gas hydrate control [J]. Geology, 2010, 38(11): 967-970. doi: 10.1130/G31136.1

    CrossRef Google Scholar

    [36] Scholz N A. Submarine landslides offshore Vancouver Island, British Columbia and the possible role of gas hydrates in slope stability[D]. Doctor Dissertation of University of Victoria, 2014.

    Google Scholar

    [37] 苏正. 海洋天然气水合物分布及渗漏动力学数值模拟[D]. 中国科学院大学博士学位论文, 2008.

    Google Scholar

    SU Zheng. Numerical computation on gas hydrate distribution and gas venting dynamics in marine environment[D]. Doctor Dissertation of Chinese Academy of Sciences, 2008.

    Google Scholar

    [38] Sun S C, Zhao J, Yu D J. Dissociation enthalpy of methane hydrate in salt solution [J]. Fluid Phase Equilibria, 2018, 456: 92-97. doi: 10.1016/j.fluid.2017.10.013

    CrossRef Google Scholar

    [39] Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater [J]. Chemical Geology, 2005, 219(1-4): 37-52. doi: 10.1016/j.chemgeo.2005.02.008

    CrossRef Google Scholar

    [40] 王淑红, 宋海斌, 颜文. 天然气水合物稳定带的计算方法与参数选择探讨[J]. 现代地质, 2005, 19(1):101-107 doi: 10.3969/j.issn.1000-8527.2005.01.015

    CrossRef Google Scholar

    WANG Shuhong, SONG Haibin, YAN Wen. Discussion of the calculation methods and selection of parameters of the gas hydrate stability zone [J]. Geoscience, 2005, 19(1): 101-107. doi: 10.3969/j.issn.1000-8527.2005.01.015

    CrossRef Google Scholar

    [41] Kaul N, Rosenberger A, Villinger H. Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan [J]. Marine Geology, 2000, 164(1-2): 37-51. doi: 10.1016/S0025-3227(99)00125-5

    CrossRef Google Scholar

    [42] Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments [J]. Reviews of Geophysics, 2009, 47(4): RG4003.

    Google Scholar

    [43] Hyndman R D, Wang K. The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B11): 22133-22154. doi: 10.1029/95JB01970

    CrossRef Google Scholar

    [44] Currie C A, Cassidy J F, Hyndman R D. A regional study of shear wave splitting above the Cascadia Subduction Zone: margin-parallel crustal stress [J]. Geophysical Research Letters, 2001, 28(4): 659-662. doi: 10.1029/2000GL011978

    CrossRef Google Scholar

    [45] Riedel M, Collett T S, Malone M J, et al. Site U1326[R]. Proceedings of the Integrated Ocean Drilling Program, 2005: 311.

    Google Scholar

    [46] Expedition 311 Scientists. Expedition 311 summary[C]//Proceedings of the Integrated Ocean Drilling Program. Washington: Integrated Ocean Drilling Program Management International, Inc. , 2006: 1-68.

    Google Scholar

    [47] Malinverno A, Kastner M, Torres M E, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311) [J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B8): B08103.

    Google Scholar

    [48] Hamilton T S, Enkin R J, Riedel M, et al. Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications [J]. Canadian Journal of Earth Sciences, 2015, 52(6): 405-430. doi: 10.1139/cjes-2014-0131

    CrossRef Google Scholar

    [49] Scholz N A, Riedel M, Urlaub M, et al. Submarine landslides offshore Vancouver Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure [J]. Geo-Marine Letters, 2016, 36(5): 323-337. doi: 10.1007/s00367-016-0452-8

    CrossRef Google Scholar

    [50] Wan S, Jian Z M, Dang H W. Deep hydrography of the South China Sea and deep water circulation in the pacific since the last glacial maximum [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1447-1463. doi: 10.1029/2017GC007377

    CrossRef Google Scholar

    [51] Fowler C M R. The Solid Earth[M]. Cambridge: Cambridge University Press, 2005.

    Google Scholar

    [52] Riedel M, Novosel I, Spence G D, et al. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin [J]. GSA Bulletin, 2006, 118(1-2): 23-38. doi: 10.1130/B25720.1

    CrossRef Google Scholar

    [53] Geotechdata. Info[EB/OL]. http://geotechdata.info/parameter.html.

    Google Scholar

    [54] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records [J]. Quaternary Science Reviews, 2002, 21(1-3): 295-305. doi: 10.1016/S0277-3791(01)00101-9

    CrossRef Google Scholar

    [55] Praetorius S K, Mix A C, Walczak M H, et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming [J]. Nature, 2015, 527(7578): 362-366. doi: 10.1038/nature15753

    CrossRef Google Scholar

    [56] Craig H, Gordon L I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere[C]//Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeo Temperatures. Spoleto Italy, 1965: 9-130.

    Google Scholar

    [57] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial [J]. Colloques Internationaux du C. N. R. S., 1974, 219: 203-209.

    Google Scholar

    [58] Elderfield H, Greaves M, Barker S, et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp [J]. Quaternary Science Reviews, 2010, 29(1-2): 160-169. doi: 10.1016/j.quascirev.2009.07.013

    CrossRef Google Scholar

    [59] Vogt P R, Jung W Y. Holocene mass wasting on upper non-Polar continental slopes-due to post-Glacial ocean warming and hydrate dissociation? [J]. Geophysical Research Letters, 2002, 29(9): 1341.

    Google Scholar

    [60] Torres M E, Tréhu A M, Cespedes N, et al. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311 [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 170-180. doi: 10.1016/j.jpgl.2008.03.061

    CrossRef Google Scholar

    [61] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706

    CrossRef Google Scholar

    [62] Yelisetti S, Spence G D, Riedel M. Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin [J]. Geophysical Journal International, 2014, 199(1): 441-458. doi: 10.1093/gji/ggu254

    CrossRef Google Scholar

    [63] Goldfinger C, Nelson C H, Johnson J E. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems [J]. Annals of Geophysics, 2003, 46(5): 1169-1194.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1496) PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint