2023 Vol. 43, No. 1
Article Contents

WANG Jiaxian, LIU Changling, NING Fulong, JI Yunkai. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101
Citation: WANG Jiaxian, LIU Changling, NING Fulong, JI Yunkai. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101

Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement

More Information
  • Considering the huge reserve and wide distribution in nature, natural gas hydrates have a great potential to become an alternative energy resource in future. How to economically and safely recovery natural gas from hydrate reservoirs is the focus of current researches. The method by using carbon dioxide (CO2) to replace methane (CH4) within natural gas hydrates has drawn enormous interests due to its two-fold bonus: CH4 recovery for energy and CO2 sequestration for safety. The latest experimental and numerical research in technology on CO2-CH4 replacement for hydrate exploitation, and the feasibility as well as its challenges were summarized. For the challenges to the low efficiency and slow rate in the replacement process, various methods and technologies to enhance the replacement processes were analyzed on examples of the usage of different phase CO2, cooperation with small-molecule gas, and combination with other exploitation methods. Finally, technical barriers and application limitations of different enhancement technologies were pointed out, and the research direction and development prospect of CO2-CH4 replacement for hydrate exploitation were prospected.

  • 加载中
  • [1] Sloan E D Jr. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135

    CrossRef Google Scholar

    [2] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007.

    Google Scholar

    [3] Nair V C, Prasad S K, Kumar R, et al. Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations [J]. Applied Energy, 2018, 225: 755-768. doi: 10.1016/j.apenergy.2018.05.028

    CrossRef Google Scholar

    [4] Kou X, Wang Y, Li X S, et al. Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator [J]. Applied Energy, 2019, 251: 113405. doi: 10.1016/j.apenergy.2019.113405

    CrossRef Google Scholar

    [5] Gambelli A M, Rossi F. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement [J]. Energy, 2019, 172: 423-434. doi: 10.1016/j.energy.2019.01.141

    CrossRef Google Scholar

    [6] Gupta P, Nair V C, Sangwai J S. Polymer-Assisted chemical inhibitor flooding: a novel approach for energy recovery from hydrate-bearing sediments [J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8043-8055.

    Google Scholar

    [7] Nair V C, Mech D, Gupta P, et al. Polymer flooding in artificial hydrate bearing sediments for methane gas recovery [J]. Energy & Fuels, 2018, 32(6): 6657-6668.

    Google Scholar

    [8] Rossi F, Gambelli A M, Sharma D K, et al. Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies [J]. Applied Thermal Engineering, 2019, 148: 371-381. doi: 10.1016/j.applthermaleng.2018.11.053

    CrossRef Google Scholar

    [9] Koh D Y, Kang H, Lee J W, et al. Energy-efficient natural gas hydrate production using gas exchange [J]. Applied Energy, 2016, 162: 114-130. doi: 10.1016/j.apenergy.2015.10.082

    CrossRef Google Scholar

    [10] Fakher S, Elgahawy Y, Abdelaal H. A comprehensive review on gas hydrate reservoirs: Formation and dissociation thermodynamics and rock and fluid properties[C]//International Petroleum Technology Conference. Beijing: International Petroleum Technology Conference, 2019.

    Google Scholar

    [11] 徐行, 罗贤虎, 彭登, 等. 中国首次试采天然气水合物成功[J]. 中国地质, 2017, 44(3):620-621 doi: 10.12029/gc20170323

    CrossRef Google Scholar

    XU Xing, LUO Xianhu, PENG Deng, et al. First successful trial collection of natural gas hydrate in China [J]. China Geology, 2017, 44(3): 620-621. doi: 10.12029/gc20170323

    CrossRef Google Scholar

    [12] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568 doi: 10.12029/gc20200301

    CrossRef Google Scholar

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. China Geology, 2020, 47(3): 557-568. doi: 10.12029/gc20200301

    CrossRef Google Scholar

    [13] Komai T, Kawamura Y K T, Yoon J H. Extraction of Gas Hydrates using CO2 sequestration[C]//The Thirteenth International Offshore and Polar Engineering Conference. Honolulu: The International Society of Offshore and Polar Engineers, 2003.

    Google Scholar

    [14] Birkedal K A, Ersland G, Husebo J, et al. Geomechanical stability during CH4 production from hydrates-depressurization or CO2 sequestration with CO2-CH4 exchange[C]//44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City: American Rock Mechanics Association, 2010.

    Google Scholar

    [15] 张学民, 李银辉, 张山岭, 等. 多孔介质中CO2-CH4水合物置换过程的强化方法研究进展[J]. 过程工程学报, 2022, 22(4):438-447 doi: 10.12034/j.issn.1009-606X.221122

    CrossRef Google Scholar

    ZHANG Xuemin, LI Yinhui, ZHANG Shanling, et al. Research progress of enhancement methods of CO2-CH4 hydrate displacement in porous media [J]. The Chinese Journal of Process Engineering, 2022, 22(4): 438-447. doi: 10.12034/j.issn.1009-606X.221122

    CrossRef Google Scholar

    [16] Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US, 5261490[P]. 1993-11-16.

    Google Scholar

    [17] 王敏, 徐刚, 蔡晶, 等. “CH4-CO2”置换法开采天然气水合物[J]. 新能源进展, 2021, 9(1):62-68

    Google Scholar

    WANG Min, XU Gang, CAI Jing, et al. Research progress on the micro-mechanism and efficiency of CH4-CO2 replacement and extraction of CH4 hydrate [J]. Advances in New and Renewable Enengy, 2021, 9(1): 62-68.

    Google Scholar

    [18] Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. doi: 10.1252/jcej.29.478

    CrossRef Google Scholar

    [19] Schoderbek D, Farrell H, Howard J, et al. ConocoPhillips gas hydrate production test[R]. Houston, TX: ConocoPhillips Co. , 2013.

    Google Scholar

    [20] Schoderbek D, Boswell R. Iġnik Sikumi #1, gas hydrate test well, successfully installed on the Alaska North Slope [J]. Fire in the Ice-Methane Hydrate Newsletter, 2011, 11: 1-5.

    Google Scholar

    [21] Ohgaki K, Takano K, Moritoki M. Exploitation of CH4 hydrates under the Nankai Trough in combination with CO2 storage [J]. Kagaku kōgaku ronbunshū, 1994, 20(1): 121-123. doi: 10.1252/kakoronbunshu.20.121

    CrossRef Google Scholar

    [22] Mu L, Von Solms N. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process [J]. The Journal of Chemical Thermodynamics, 2018, 117: 33-42. doi: 10.1016/j.jct.2017.08.018

    CrossRef Google Scholar

    [23] Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228-229: 553-559. doi: 10.1016/j.fluid.2004.10.002

    CrossRef Google Scholar

    [24] Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation [J]. The Journal of Physical Chemistry A, 2002, 106(34): 7982-7987. doi: 10.1021/jp020795r

    CrossRef Google Scholar

    [25] Huo Z X, Hester K, Sloan E D Jr, et al. Methane hydrate nonstoichiometry and phase diagram [J]. AIChE Journal, 2003, 49(5): 1300-1306. doi: 10.1002/aic.690490521

    CrossRef Google Scholar

    [26] Circone S, Stern L A, Kirby S H, et al. CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate [J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539. doi: 10.1021/jp027391j

    CrossRef Google Scholar

    [27] Geng C Y, Wen H, Zhou H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2 [J]. The Journal of Physical Chemistry A, 2009, 113(18): 5463-5469. doi: 10.1021/jp811474m

    CrossRef Google Scholar

    [28] Yonkofski C M R, Horner J A, White M D. Experimental and numerical investigation of hydrate-guest molecule exchange kinetics [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1480-1489. doi: 10.1016/j.jngse.2016.03.080

    CrossRef Google Scholar

    [29] 张杰, 关富佳. CO2置换联合热采技术开采天然气水合物可行性分析[J]. 能源化工, 2018, 39(2):71-75 doi: 10.3969/j.issn.1006-7906.2018.02.015

    CrossRef Google Scholar

    ZHANG Jie, GUAN Fujia. Feasibility analysis on CO2 replacement combined with heating technology for production of natural gas hydrate [J]. Energy Chemical Industry, 2018, 39(2): 71-75. doi: 10.3969/j.issn.1006-7906.2018.02.015

    CrossRef Google Scholar

    [30] 颜雨. CO2乳液稳定性评价和CO2乳液盖层改造降压开采水合物研究[D]. 中国石油大学(北京)硕士学位论文, 2019

    Google Scholar

    YAN Yu. Experimental study on stability of CO2 emulsion and hydrate depressurization exploitation after cap reformation via CO2 emulsion[D]. Master Dissertation of China University of Petroleum (Beijing), 2019.

    Google Scholar

    [31] Lee S, Lee Y, Lee J, et al. Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter [J]. Environmental Science & Technology, 2013, 47(22): 13184-13190.

    Google Scholar

    [32] Jung J W, Espinoza D N, Santamarina J C. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sedim-ents [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B10): B10102. doi: 10.1029/2009JB000812

    CrossRef Google Scholar

    [33] Yuan Q, Sun C Y, Liu B, et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 [J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018

    CrossRef Google Scholar

    [34] Yuan Q, Sun C Y, Yang X, et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor [J]. Energy, 2012, 40(1): 47-58. doi: 10.1016/j.energy.2012.02.043

    CrossRef Google Scholar

    [35] Schicks J M, Strauch B, Heeschen K U, et al. From microscale (400 μl) to macroscale (425 L): Experimental investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the Iġnik Sikumi Field Trial [J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5): 3608-3620. doi: 10.1029/2017JB015315

    CrossRef Google Scholar

    [36] Gambelli A M, Filipponi M, Rossi F. How methane release may affect carbon dioxide storage during replacement processes in natural gas hydrate reservoirs [J]. Journal of Petroleum Science and Engineering, 2021, 205: 108895. doi: 10.1016/j.petrol.2021.108895

    CrossRef Google Scholar

    [37] Xu C G, Zhang W, Yan K F, et al. Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction [J]. Chemical Engineering Science, 2022, 248: 117266. doi: 10.1016/j.ces.2021.117266

    CrossRef Google Scholar

    [38] Uchida T, Takeya S, Ebinuma T, et al. Replacing methane with CO2 in clathrate hydrate: observations using Raman spectroscopy[J]. 2001.

    Google Scholar

    [39] Ors O, Sinayuc C. An experimental study on the CO2-CH4 swap process between gaseous CO2 and CH4 hydrate in porous media [J]. Journal of Petroleum Science and Engineering, 2014, 119: 156-162. doi: 10.1016/j.petrol.2014.05.003

    CrossRef Google Scholar

    [40] Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2020, 389: 124434. doi: 10.1016/j.cej.2020.124434

    CrossRef Google Scholar

    [41] Xu C G, Cai J, Yu Y S, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates [J]. Fuel, 2018, 216: 255-265. doi: 10.1016/j.fuel.2017.12.022

    CrossRef Google Scholar

    [42] Zhang Y, Xiong L J, Li X S, et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection [J]. Chemical Engineering & Technology, 2014, 37(12): 2022-2029.

    Google Scholar

    [43] 宋光春, 李玉星, 王武昌. 温度和压力对CO2置换甲烷水合物的影响[J]. 油气储运, 2016, 35(3):295-301

    Google Scholar

    SONG Guangchun, LI Yuxing, WANG Wuchang. Impacts of temperature and pressure on displacement of CH4 in hydrate by CO2 [J]. Oil and Gas Storage and Transportation, 2016, 35(3): 295-301.

    Google Scholar

    [44] Uchida T, Ikeda I Y, Takeya S, et al. Kinetics and stability of CH4-CO2 mixed gas hydrates during formation and long-term storage [J]. ChemPhysChem, 2005, 6(4): 646-654. doi: 10.1002/cphc.200400364

    CrossRef Google Scholar

    [45] Huang X, Cai W J, Zhan L S, et al. Study on the reaction of methane hydrate with gaseous CO2 by Raman imaging microscopy [J]. Chemical Engineering Science, 2020, 222: 115720. doi: 10.1016/j.ces.2020.115720

    CrossRef Google Scholar

    [46] Yoon J H, Kawamura T, Yamamoto Y, et al. Transformation of methane hydrate to carbon dioxide hydrate: In situ Raman spectroscopic observations[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: The International Society of Offshore and Polar Engineers, 2005.

    Google Scholar

    [47] 王菲菲. 二氧化碳置换甲烷水合物微观实验研究[D]. 中国地质大学博士学位论文, 2015.

    Google Scholar

    WANG Feifei. Micro-experimental study onreplacement of CH4 hydrate by use of Co[D]. Doctor Dissertation of China University of Geosciences, 2015.

    Google Scholar

    [48] Wang T, Zhang L X, Sun L J, et al. Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement [J]. Chemical Engineering Journal, 2021, 425: 131562. doi: 10.1016/j.cej.2021.131562

    CrossRef Google Scholar

    [49] Pan D B, Zhong X P, Zhu Y, et al. CH4 recovery and CO2 sequestration from hydrate-bearing clayey sediments via CO2/N2 injection [J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103503. doi: 10.1016/j.jngse.2020.103503

    CrossRef Google Scholar

    [50] Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery [J]. Chemical Engineering Journal, 2022, 437: 135368. doi: 10.1016/j.cej.2022.135368

    CrossRef Google Scholar

    [51] Gambelli A M. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation [J]. Chemical Engineering Science, 2021, 233: 116430. doi: 10.1016/j.ces.2020.116430

    CrossRef Google Scholar

    [52] Zhang X M, Wang Y M, Li J P, et al. Recovering CH4 from natural gas hydrate with CO2 in porous media below the freezing point [J]. Petroleum Science and Technology, 2019, 37(7): 770-779. doi: 10.1080/10916466.2019.1566248

    CrossRef Google Scholar

    [53] Khasanov M K, Stolpovsky M V, Gimaltdinov I K. Mathematical model of injection of liquid carbon dioxide in a reservoir saturated with methane and its hydrate [J]. International Journal of Heat and Mass Transfer, 2019, 132: 529-538. doi: 10.1016/j.ijheatmasstransfer.2018.12.033

    CrossRef Google Scholar

    [54] Khasanov M K, Musakaev N G, Stolpovsky M V, et al. Mathematical Model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate [J]. Mathematics, 2020, 8(9): 1482. doi: 10.3390/math8091482

    CrossRef Google Scholar

    [55] Shagapov V S, Khasanov M K, Musakaev N G, et al. Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide [J]. International Journal of Heat and Mass Transfer, 2017, 107: 347-357. doi: 10.1016/j.ijheatmasstransfer.2016.11.034

    CrossRef Google Scholar

    [56] Lee B R, Koh C A, Sum A K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14922-14927. doi: 10.1039/C4CP01780C

    CrossRef Google Scholar

    [57] Qi Y X, Ota M, Zhang H. Molecular dynamics simulation of replacement of CH4 in hydrate with CO2 [J]. Energy Conversion and Management, 2011, 52(7): 2682-2687. doi: 10.1016/j.enconman.2011.01.020

    CrossRef Google Scholar

    [58] Tung Y T, Chen L J, Chen Y P, et al. In situ methane recovery and carbon dioxide sequestration in methane hydrates: A molecular dynamics simulation study [J]. The Journal of Physical Chemistry B, 2011, 115(51): 15295-15302. doi: 10.1021/jp2088675

    CrossRef Google Scholar

    [59] Hsieh P Y, Sean W Y, Sato T, et al. Mesoscale modeling of exploiting methane hydrate by CO2 replacement in homogeneous porous media [J]. International Journal of Heat and Mass Transfer, 2020, 158: 119741. doi: 10.1016/j.ijheatmasstransfer.2020.119741

    CrossRef Google Scholar

    [60] Bai D S, Zhang X R, Chen G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy & Environmental Science, 2012, 5(5): 7033-7041.

    Google Scholar

    [61] 刘一楠. 基于分子动力学模拟的天然气水合物分解和置换过程机理研究[D]. 天津大学硕士学位论文, 2017.

    Google Scholar

    LIU Yinan. Mechanism study on the decomposition andreplacement of natural gas hydrate basedon molecular dynamics simulation[D]. Master Dissertation of Tianjin University, 2017.

    Google Scholar

    [62] Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11-12): 1680-1691. doi: 10.1016/j.enconman.2004.10.002

    CrossRef Google Scholar

    [63] Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. doi: 10.1002/aic.11294

    CrossRef Google Scholar

    [64] 张凤琦, 陈国兴, 郭开华, 等. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3):639-645 doi: 10.12034/j.issn.1009-606X.217304

    CrossRef Google Scholar

    ZHANG Fengqi, CHEN Guoxing, GUO Kaihua, et al. Process characteristics on replacement of bulk-methane hydrates with liquid cardon dioxide [J]. The Chinese Journal of Process Engineering, 2018, 18(3): 639-645. doi: 10.12034/j.issn.1009-606X.217304

    CrossRef Google Scholar

    [65] Zhou X T, Fan S S, Liang D Q, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide [J]. Energy Conversion and Management, 2008, 49(8): 2124-2129. doi: 10.1016/j.enconman.2008.02.006

    CrossRef Google Scholar

    [66] Wang X H, Li F G, Xu Y X, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement [J]. Energy Conversion and Management, 2015, 99: 274-281. doi: 10.1016/j.enconman.2015.04.032

    CrossRef Google Scholar

    [67] Falenty A, Qin J, Salamatin A N, et al. Fluid composition and kinetics of the in-situ replacement in CH4-CO2 hydrate system [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27159-27172. doi: 10.1021/acs.jpcc.6b09460

    CrossRef Google Scholar

    [68] Kvamme B, Graue A, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers [J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 236-246. doi: 10.1016/S1750-5836(06)00002-8

    CrossRef Google Scholar

    [69] Zhou X T, Fan S S, Liang D Q, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion [J]. Energy & Fuels, 2008, 22(3): 1759-1764.

    Google Scholar

    [70] 周锡堂, 樊栓狮, 梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2):259-264

    Google Scholar

    ZHOU Xitang, FAN Shuanshi, LIANG Deqing. Kinetic research on replacement of methane in gas hydrate with carbon dioxide emulsion [J]. Natural Gas Geoscience, 2013, 24(2): 259-264.

    Google Scholar

    [71] Deusner C, Bigalke N, Kossel E, et al. Methane production from gas hydrate deposits through injection of supercritical CO2 [J]. Energies, 2012, 5(7): 2112-2140. doi: 10.3390/en5072112

    CrossRef Google Scholar

    [72] Bi Y, Yang T, Guo K H. Determination of the upper-quadruple-phase equilibrium region for carbon dioxide and methane mixed gas hydrates [J]. Journal of Petroleum Science and Engineering, 2013, 101: 62-67. doi: 10.1016/j.petrol.2012.11.019

    CrossRef Google Scholar

    [73] McGrail B P, Zhu T, Hunter R B, et al. A new method for enhanced production of gas hydrates with CO2 [J]. Gas Hydrates:Energy Resource Potential and Associated Geologic Hazards, 2004, 2004: 12-16.

    Google Scholar

    [74] Lee Y, Kim Y, Lee J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter [J]. Applied Energy, 2015, 150: 120-127. doi: 10.1016/j.apenergy.2015.04.012

    CrossRef Google Scholar

    [75] Mu L, von Solms N. Methane production and carbon capture by hydrate swapping [J]. Energy & Fuels, 2017, 31(4): 3338-3347.

    Google Scholar

    [76] Prasad P S R, Kiran B S. Stability and exchange of guest molecules in gas hydrates under the influence of CH4, CO2, N2 and CO2+N2 gases at low-pressures [J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103311. doi: 10.1016/j.jngse.2020.103311

    CrossRef Google Scholar

    [77] Lim D, Ro H, Seo Y, et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection [J]. The Journal of Chemical Thermodynamics, 2017, 106: 16-21. doi: 10.1016/j.jct.2016.11.012

    CrossRef Google Scholar

    [78] Bhawangirkar D R, Sangwai J S. Insights into cage occupancies during gas exchange in CH4+CO2 and CH4+N2+CO2 mixed hydrate systems relevant for methane gas recovery and carbon dioxide sequestration in hydrate reservoirs: a thermodynamic approach [J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14462-14475.

    Google Scholar

    [79] Matsui H, Jia J H, Tsuji T, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures [J]. Fuel, 2020, 263: 116640. doi: 10.1016/j.fuel.2019.116640

    CrossRef Google Scholar

    [80] Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 13936-13950. doi: 10.1002/slct.202003845

    CrossRef Google Scholar

    [81] Sun Y H, Li S L, Zhang G B, et al. Hydrate phase equilibrium of CH4+N2+CO2 gas mixtures and cage occupancy behaviors [J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8133-8142.

    Google Scholar

    [82] Li B, Xu T F, Zhang G B, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement [J]. Energy Conversion and Management, 2018, 165: 738-747. doi: 10.1016/j.enconman.2018.03.095

    CrossRef Google Scholar

    [83] 王晓辉. 注气开采天然气水合物实验模拟与能效分析[D]. 中国石油大学(北京)博士学位论文, 2017

    Google Scholar

    WANG Xiaohui. Experimental simulation and energy efficiency analysis of gas hydrates production by gas injection method[D]. Doctor Dissertation of China University of Petroleum (Beijing), 2017.

    Google Scholar

    [84] Chaturvedi K R, Sinha A S K, Nair V C, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production [J]. Energy, 2021, 227: 120521. doi: 10.1016/j.energy.2021.120521

    CrossRef Google Scholar

    [85] Sun Y H, Zhang G B, Li S L, et al. CO2/N2 injection into CH4+C3H8 hydrates for gas recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2019, 375: 121973. doi: 10.1016/j.cej.2019.121973

    CrossRef Google Scholar

    [86] Yasue M, Masuda Y, Liang Y F. Estimation of methane recovery efficiency from methane hydrate by the N2-CO2 gas mixture injection method [J]. Energy & Fuels, 2020, 34(5): 5236-5250.

    Google Scholar

    [87] Liu B, Pan H, Wang X H, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity [J]. Energies, 2013, 6(12): 6242-6254. doi: 10.3390/en6126242

    CrossRef Google Scholar

    [88] Pandey J S, Solms N V. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios [J]. Energies, 2019, 12(12): 2309. doi: 10.3390/en12122309

    CrossRef Google Scholar

    [89] Yang J H, Okwananke A, Tohidi B, et al. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration [J]. Energy Conversion and Management, 2017, 136: 431-438. doi: 10.1016/j.enconman.2017.01.043

    CrossRef Google Scholar

    [90] 王曦. CO2+N2混合气置换开采天然气水合物实验研究及过程模拟[D]. 华南理工大学硕士学位论文, 2017.

    Google Scholar

    WANG Xi. Experimental research and process simulation of natural gas hydrate replacement production by injecting CO2+N2 mixture gas[D]. Master Dissertation of South China University of Technology, 2017.

    Google Scholar

    [91] Park Y, Kim D Y, Lee J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates [J]. Proceedings of the National Academy of Sciences, 2006, 103(34): 12690-12694. doi: 10.1073/pnas.0602251103

    CrossRef Google Scholar

    [92] Koh D Y, Kang H, Kim D O, et al. Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture [J]. ChemSusChem, 2012, 5(8): 1443-1448. doi: 10.1002/cssc.201100644

    CrossRef Google Scholar

    [93] Cha M J, Shin K, Lee H, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy [J]. Environmental Science & Technology, 2015, 49(3): 1964-1971.

    Google Scholar

    [94] Koh D Y, Ahn Y H, Kang H, et al. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas [J]. AIChE Journal, 2015, 61(3): 1004-1014. doi: 10.1002/aic.14687

    CrossRef Google Scholar

    [95] Youn Y, Cha M J, Kwon M, et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor [J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1712-1719. doi: 10.1007/s11814-015-0294-5

    CrossRef Google Scholar

    [96] Pan D B, Zhong X P, Li B, et al. Experimental investigation into methane production from hydrate-bearing clayey sediment by CO2/N2 replacement [J]. Energy Exploration & Exploitation, 2020, 38(6): 2601-2617.

    Google Scholar

    [97] 潘栋彬. 海洋天然气水合物射流破碎与注CO2/N2置换联合开采研究[D]. 吉林大学, 2021.

    Google Scholar

    PAN Dongbin. Research on joint exploitation of marine gas hydrate jet fragmentation and CO2/N2 replacement [D]. Jilin University, 2021.

    Google Scholar

    [98] Niu M Y, Wu G Z, Yin Z Y, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition [J]. Chemical Engineering Journal, 2021, 420: 129615. doi: 10.1016/j.cej.2021.129615

    CrossRef Google Scholar

    [99] Seo Y, Kang S P, Jang W. Study on mechanism of methane hydrate replacement by carbon dioxide injection[C]//The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: The International Society of Offshore and Polar Engineers, 2009.

    Google Scholar

    [100] Zhou X B, Liang D Q, Liang S, et al. Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures [J]. Energy & Fuels, 2015, 29(2): 1099-1106.

    Google Scholar

    [101] Ouyang Q, Fan S S, Wang Y H, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates [J]. Energy & Fuels, 2020, 34(10): 12476-12485.

    Google Scholar

    [102] 操原. 二氧化碳与氮气混合气辅热联合置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2018.

    Google Scholar

    CAO Yuan. Experimental study on gas hydrate exploitation by combining N2 and CO2 mixture replacement and heat injection[D]. Master Dissertation of South China University of Technology, 2018.

    Google Scholar

    [103] Masuda Y. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: experimental investigation on CO2-CH4 exchange ratio[C]//International Conference on Gas Hydrate. 2011.

    Google Scholar

    [104] Tupsakhare S S, Castaldi M J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion [J]. Applied Energy, 2019, 236: 825-836. doi: 10.1016/j.apenergy.2018.12.023

    CrossRef Google Scholar

    [105] 余静薇, 祁影霞, 魏欣宇. Ar提高CO2置换CH4水合物置换率研究[J]. 热能动力工程, 2020, 35(6):251-256

    Google Scholar

    YU Jingwei, QI Yingxia, WEI Xinyu. Promotion of replacement rate of CH4 hydrates with CO2 by adding small Ar gas [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 251-256.

    Google Scholar

    [106] Okwananke A, Yang J H, Tohidi B, et al. Enhanced depressurisation for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen [J]. The Journal of Chemical Thermodynamics, 2018, 117: 138-146. doi: 10.1016/j.jct.2017.09.028

    CrossRef Google Scholar

    [107] 穆德富, 祁影霞. 热激励的CO2置换CH4水合物的实验研究[J]. 能源研究与信息, 2017, 33(1):13-18

    Google Scholar

    MU Defu, QI Yingxia. Experimental study on the replacement of methane hydrate by CO2 with thermal excitation [J]. Energy Research and Information, 2017, 33(1): 13-18.

    Google Scholar

    [108] Zhang L X, Yang L, Wang J Q, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate [J]. Chemical Engineering Journal, 2017, 308: 40-49. doi: 10.1016/j.cej.2016.09.047

    CrossRef Google Scholar

    [109] Stanwix P L, Rathnayake N M, De Obanos F P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments [J]. Energy & Environmental Science, 2018, 11(7): 1828-1840.

    Google Scholar

    [110] 欧阳潜. 置换联合原位加热强化开采天然气水合物及逆置换研究[D]. 华南理工大学硕士学位论文, 2020.

    Google Scholar

    OUYANG Qian. Investigation of replacement combined with in-situ heating enhanced exploitation of natural gas hydrates and the inverse[D]. Master Dissertation of South China University of Technology, 2020.

    Google Scholar

    [111] 张育诚. 注热及CO2/N2置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2019

    Google Scholar

    ZHANG Yucheng. Recovery CHA via thermal stimulation and CO2/N2 nreplacement of methane hydrate[D]. Master Dissertation of South China University of Technology, 2019.

    Google Scholar

    [112] Tupsakhare S S, Fitzgerald G C, Castaldi M J. Thermally assisted dissociation of methane hydrates and the impact of CO2 injection [J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10465-10476.

    Google Scholar

    [113] Zhao J F, Chen X Q, Song Y C, et al. Experimental study on a novel way of methane hydrates recovery: combining CO2 replacement and depressurization [J]. Energy Procedia, 2014, 61: 75-79. doi: 10.1016/j.egypro.2014.11.910

    CrossRef Google Scholar

    [114] Zhao J F, Zhang L X, Chen X Q, et al. Combined replacement and depressurization methane hydrate recovery method [J]. Energy Exploration & Exploitation, 2016, 34(1): 129-139.

    Google Scholar

    [115] Ouyang Q, Pandey J S, Von Solms N. Critical parameters influencing mixed CH4/CO2 hydrates dissociation during multistep depressurization[J]. Fuel, 2022, 320: 123985.

    Google Scholar

    [116] Lee Y, Deusner C, Kossel E, et al. Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment [J]. Applied Energy, 2020, 277: 115569. doi: 10.1016/j.apenergy.2020.115569

    CrossRef Google Scholar

    [117] Mohammadi A H, Eslamimanesh A, Richon D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system [J]. Chemical Engineering Science, 2013, 94: 284-290. doi: 10.1016/j.ces.2013.01.063

    CrossRef Google Scholar

    [118] 龙小军. TBAB和TEAB存在下水合物法生物气脱碳技术研究[D]. 华南理工大学硕士学位论文, 2017.

    Google Scholar

    LONG Xiaojun. Study on hydrate based biogas decarburization technology in the presence of TBAB and TEAB[D]. Master Dissertation of South China University of Technology, 2017.

    Google Scholar

    [119] Babu P, Chin W I, Kumar R, et al. Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process [J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887.

    Google Scholar

    [120] 王乐, 祁影霞, 邢艳青, 等. 置换法开采天然气水合物的实验研究[J]. 现代化工, 2014, 34(4):89-92 doi: 10.16606/j.cnki.issn0253-4320.2014.04.043

    CrossRef Google Scholar

    WANG Le, QI Yingxia, XING Yanqing, et al. Experimental study on exploitation of natural gas hydrate by replacement with CO2 [J]. Modern Chemical Industry, 2014, 34(4): 89-92. doi: 10.16606/j.cnki.issn0253-4320.2014.04.043

    CrossRef Google Scholar

    [121] Ricaurte M, Dicharry C, Renaud X, et al. Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation [J]. Fuel, 2014, 122: 206-217. doi: 10.1016/j.fuel.2014.01.025

    CrossRef Google Scholar

    [122] Gambelli A M, Castellani B, Nicolini A, et al. Water salinity as potential aid for improving the carbon dioxide replacement process’ effectiveness in natural gas hydrate reservoirs [J]. Processes, 2020, 8(10): 1298. doi: 10.3390/pr8101298

    CrossRef Google Scholar

    [123] Gambelli A M, Castellani B, Filipponi M, et al. Chemical inhibitors as potential allied for CO2 replacement in gas hydrates reservoirs: Sodium chloride case study[C]//Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering (MCM'20). Prague, Czech Republic: ICCPE, 2020, 18.

    Google Scholar

    [124] Liu X J, Ren J J, Chen D Y, et al. Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage [J]. Chemical Engineering Journal, 2022, 438: 135504. doi: 10.1016/j.cej.2022.135504

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(3995) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint