2022 Vol. 42, No. 4
Article Contents

TAO Shuqin, LI Yunhai, TANG Zheng, YE Xiang, SUN Heng, GAO Zhongyong, LI Guogang. Composition of organic materials and the control factors of suspended particulates in the surface water of the Ross Sea-Amundsen Sea in marginal sea of the southwestern Antarctic in austral summer 2019-2020[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 24-38. doi: 10.16562/j.cnki.0256-1492.2022022101
Citation: TAO Shuqin, LI Yunhai, TANG Zheng, YE Xiang, SUN Heng, GAO Zhongyong, LI Guogang. Composition of organic materials and the control factors of suspended particulates in the surface water of the Ross Sea-Amundsen Sea in marginal sea of the southwestern Antarctic in austral summer 2019-2020[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 24-38. doi: 10.16562/j.cnki.0256-1492.2022022101

Composition of organic materials and the control factors of suspended particulates in the surface water of the Ross Sea-Amundsen Sea in marginal sea of the southwestern Antarctic in austral summer 2019-2020

  • The study on the composition and source of suspended particulate organic matter in the marginal sea helps understand marine material biogeochemical cycle. The geographical location and climate environment of Antarctica are special. Antarctic marginal seas are affected by the interaction among marine, atmospheric, and glacial systems. The composition and source of particulate organic carbon (POC) has unique regional characteristics and global significance. Based on the dataset of organic carbon, nitrogen, and their isotopes and source-specific biomarkers extracted from 59 samples of suspended particulate matter collected from surface seawater in the western Antarctic marginal seas during the 36th Antarctic scientific expedition of China, the distribution and composition of organic matter in the suspended particulate matter were studied. The factors controlling the spatial distribution of particulate organic matter were examined, and the application potential of different organic geochemical proxies as the composition and source indicators to particulate organic matter in the Ross Sea-Amundsen Sea was evaluated. Results show that POC concentration in the surface water of the Ross Sea-Amundsen Sea is consistent with the spatial distribution of surface water fluorescence, seawater pCO2, and marine phytoplankton or animal derived biomarkers, which implies that POC in the surface water of Ross Sea-Amundsen Sea in summer is mainly produced by marine phytoplanktons and animals. The C/N ratio is generally below 4, indicating that POC in these regions is obviously degraded by microorganisms. The bulk δ13C value is generally lower than −25.2‰, and the spatial distribution is complex, which reflects the unique mixed POC signals of 13C-depleted phytoplankton source, 13C-enriched animal source , and 13C-depleted terrestrial origins from the Antarctic landscape. Lipid biomarker proxies archived from surface suspended particulate matter is an effective tool to distinguish sources of POC. The concentrations of phytoplankton-derived biomarkers such as brassicasterol and dinosterol reflect the contribution of phytoplankton-derived POC. The nearshore polynya shows a high value, and the spatial variability of its concentration is controlled by the phytoplankton activity in water column. Cholesterol reflects the contribution of animal derived POC. The nearshore at edge of ice shelf shows a high value, and the spatial variability of its concentration is controlled by the secondary productivity in water column and the biomass of penguins and seals. Long chain alkyl lipid biomarkers represent the contribution of lithologic POC from the Antarctic continental region. The spatial variation of their concentration is controlled by glacial activities, and often shows high values in the nearshore area at the edge of ice shelf where obvious ice melting is taken place. This research shows that the comprehensive evaluation of biomarker molecular indicators combined with bulk organic matter indicators provides an effective method for accurately resolving the complex POC matrix in the Antarctic marginal sea.

  • 加载中
  • [1] Thomas H, Bozec Y, Elkalay K, et al. Enhanced open ocean storage of CO2 from shelf sea pumping [J]. Science, 2004, 304(5673): 1005-1008. doi: 10.1126/science.1095491

    CrossRef Google Scholar

    [2] 朱纯, 潘建明, 卢冰, 等. 长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J]. 海洋学报, 2005, 27(4):59-67

    Google Scholar

    ZHU Chun, PAN Jianming, LU Bing, et al. Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon [J]. Acta Oceanologica Sinica, 2005, 27(4): 59-67.

    Google Scholar

    [3] 高建华, 汪亚平, 潘少明, 等. 长江口外海域沉积物中有机物的来源及分布[J]. 地理学报, 2007, 62(9):981-991 doi: 10.3321/j.issn:0375-5444.2007.09.009

    CrossRef Google Scholar

    GAO Jianhua, WANG Yaping, PAN Shaoming, et al. Source and distribution of organic matter in seabed sediments of the Changjiang River estuary and its adjacent sea area [J]. Acta Geographica Sinica, 2007, 62(9): 981-991. doi: 10.3321/j.issn:0375-5444.2007.09.009

    CrossRef Google Scholar

    [4] Liu K K, Atkinson L, Quiñones R, et al. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis[M]. Berlin: Springer, 2010: 741.

    Google Scholar

    [5] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment [J]. Annual Review of Marine Science, 2012, 4: 401-423. doi: 10.1146/annurev-marine-120709-142717

    CrossRef Google Scholar

    [6] 胡静文, 张海龙, 李莉, 等. 长江口悬浮颗粒物中有机质来源及厌氧氨氧化活动的季节性变化[J]. 中国科学:地球科学, 2016, 59(7):1339-1352 doi: 10.1007/s11430-016-5286-8

    CrossRef Google Scholar

    HU Jingwen, ZHANG Hailong, LI Li, et al. Seasonal changes of organic matter origins and anammox activity in the Changjiang Estuary deduced from multi-biomarkers in suspended particulates [J]. Science China Earth Sciences, 2016, 59(7): 1339-1352. doi: 10.1007/s11430-016-5286-8

    CrossRef Google Scholar

    [7] Keil R. Anthropogenic forcing of carbonate and organic carbon preservation in marine sediments [J]. Annual Review of Marine Science, 2017, 9: 151-172. doi: 10.1146/annurev-marine-010816-060724

    CrossRef Google Scholar

    [8] 焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学:地球科学, 2018, 61(11):1535-1563 doi: 10.1007/s11430-018-9190-x

    CrossRef Google Scholar

    JIAO Nianzhi, LIANG Yantao, ZHANG Yongyu, et al. Carbon pools and fluxes in the China Seas and adjacent oceans [J]. Science China Earth Sciences, 2018, 61(11): 1535-1563. doi: 10.1007/s11430-018-9190-x

    CrossRef Google Scholar

    [9] Arrigo K R, Worthen D, Schnell A, et al. Primary production in Southern Ocean waters [J]. Journal of Geophysical Research:Oceans, 1998, 103(C8): 15587-15600. doi: 10.1029/98JC00930

    CrossRef Google Scholar

    [10] Stammerjohn S, Massom R, Rind D, et al. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison [J]. Geophysical Research Letters, 2012, 39(6): L06501.

    Google Scholar

    [11] Wu Y, Zhang J, Mi T Z, et al. Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea [J]. Marine Chemistry, 2001, 76(1-2): 1-15. doi: 10.1016/S0304-4203(01)00040-8

    CrossRef Google Scholar

    [12] 黄清辉, 沈涣庭. 河口海岸环境中有机污染标志物的研究意义[J]. 海洋科学, 2001, 25(12):18-20 doi: 10.3969/j.issn.1000-3096.2001.12.005

    CrossRef Google Scholar

    HUANG Qinghui, SHEN Huanting. Significance of molecule markers in study the pollution in the estuarine and coastal environments [J]. Marine Sciences, 2001, 25(12): 18-20. doi: 10.3969/j.issn.1000-3096.2001.12.005

    CrossRef Google Scholar

    [13] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 107-116. doi: 10.1016/j.jpgl.2004.05.012

    CrossRef Google Scholar

    [14] Li X X, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea [J]. Marine Chemistry, 2012, 145-147: 37-52. doi: 10.1016/j.marchem.2012.10.001

    CrossRef Google Scholar

    [15] Liu B, He Y X, Zhang Y Z, et al. Natural and anthropogenic organic matter cycling between coastal wetlands and rivers: a case study from Liao River Delta [J]. Estuarine, Coastal and Shelf Science, 2020, 236: 106610. doi: 10.1016/j.ecss.2020.106610

    CrossRef Google Scholar

    [16] Feng X J, Vonk J E, Van Dongen B E, et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14168-14173. doi: 10.1073/pnas.1307031110

    CrossRef Google Scholar

    [17] Collister J W, Rieley G, Stern B, et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Organic Geochemistry, 1994, 21(6-7): 619-627. doi: 10.1016/0146-6380(94)90008-6

    CrossRef Google Scholar

    [18] Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: : implications for nutrient utilization and organic matter composition [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2001, 48(3): 789-810. doi: 10.1016/S0967-0637(00)00069-8

    CrossRef Google Scholar

    [19] Blair N, Leu A, Muñoz E, et al. Carbon isotopic fractionation in heterotrophic microbial metabolism [J]. Applied and Environmental Microbiology, 1985, 50(4): 996-1001. doi: 10.1128/aem.50.4.996-1001.1985

    CrossRef Google Scholar

    [20] Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation [J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879-893. doi: 10.1016/0016-7037(94)90512-6

    CrossRef Google Scholar

    [21] Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle processes [J]. Ecological Applications, 2000, 10(2): 412-422. doi: 10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2

    CrossRef Google Scholar

    [22] Waterson E J, Canuel E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses [J]. Organic Geochemistry, 2008, 39(4): 422-439. doi: 10.1016/j.orggeochem.2008.01.011

    CrossRef Google Scholar

    [23] Schreiner K M, Blair N E, Levinson W, et al. Contribution of fungal macromolecules to soil carbon sequestration[M]//Hartemink A, McSweeney K. Soil Carbon. Cham: Springer, 2014: 155-161.

    Google Scholar

    [24] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0

    CrossRef Google Scholar

    [25] Lee S, Fuhrman J A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton [J]. Applied and Environmental Microbiology, 1987, 53(6): 1298-1303. doi: 10.1128/aem.53.6.1298-1303.1987

    CrossRef Google Scholar

    [26] Coffin R B, Cifuentes L A, Approaches for measuring stable carbon and nitrogen isotopes in bacteria[M]//Kemp P F, Sherr B F, Sherr E B, et al. Handbook of Methods in Aquatic Microbial Ecology. Boca Raton: CRC Press, 1993.

    Google Scholar

    [27] 尹希杰, 李云海, 乔磊, 等. 南极普里兹湾海域夏季表层水体颗粒有机碳及其同位素分布特征[J]. 极地研究, 2014, 26(1): 159-166.

    Google Scholar

    YIN Xijie, LI Yunhai, QIAO Lei, et al. Distribution of particulate organic carbon (POC) and δ13CPOC in surface waters in summer in Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2014, 26(1): 159-166.

    Google Scholar

    [28] 韩正兵, 扈传昱, 薛斌, 等. 2007/2008年和2008/2009年夏季南大洋以及普里兹湾POC的分布与变化[J]. 极地研究, 2011, 23(1):11-18

    Google Scholar

    HAN Zhengbing, HU Chuanyu, XUE Bin, et al. Particulate organic carbon in the surface water of south ocean and prydz bay during the austral summer of 2007/2008 and 2008/2009 [J]. Chinese Journal of Polar Research, 2011, 23(1): 11-18.

    Google Scholar

    [29] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable Isotopes in Ecological Research. New York: Springer, 1989: 196-229.

    Google Scholar

    [30] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? [J]. Organic Geochemistry, 1997, 27(5-6): 195-212. doi: 10.1016/S0146-6380(97)00066-1

    CrossRef Google Scholar

    [31] Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt: a sedimentary incinerator [J]. Continental Shelf Research, 2006, 26(17-18): 2241-2259. doi: 10.1016/j.csr.2006.07.016

    CrossRef Google Scholar

    [32] Wiesenberg G L B, Schwarzbauer J, Schmidt M W I, et al. Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures [J]. Organic Geochemistry, 2004, 35(11-12): 1371-1393. doi: 10.1016/S0146-6380(04)00122-6

    CrossRef Google Scholar

    [33] Weijers J W H, Schouten S, Schefuß E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: a multi-proxy approach in a 20, 000 year sediment record from the Congo deep-sea fan [J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 119-132. doi: 10.1016/j.gca.2008.10.016

    CrossRef Google Scholar

    [34] Kopczyńska E E, Goeyens L, Semeneh M, et al. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values [J]. Journal of Plankton Research, 1995, 17(4): 685-707. doi: 10.1093/plankt/17.4.685

    CrossRef Google Scholar

    [35] Cozzi S, Cantoni C. Stable isotope (δ13C and δ15N) composition of particulate organic matter, nutrients and dissolved organic matter during spring ice retreat at Terra Nova Bay [J]. Antarctic Science, 2011, 23(1): 43-56. doi: 10.1017/S0954102010000611

    CrossRef Google Scholar

    [36] 于培松, 张海生, 扈传昱, 等. 利用沉积生物标志物分析南极普里兹湾浮游植物群落结构变化[J]. 极地研究, 2012, 24(2):143-150

    Google Scholar

    YU Peisong, ZHANG Haisheng, HU Chuanyu, et al. Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica [J]. Chinese Journal of Polar Research, 2012, 24(2): 143-150.

    Google Scholar

    [37] Petty A A, Feltham D L, Holland P R. Impact of atmospheric forcing on antarctic continental shelf water masses [J]. Journal of Physical Oceanography, 2013, 43(5): 920-940. doi: 10.1175/JPO-D-12-0172.1

    CrossRef Google Scholar

    [38] Sweeney C. The annual cycle of surface water CO2 and O2 in the Ross Sea: a model for gas exchange on the continental shelves of Antarctica[M]//Ditullio G R, Dunbar R B. Biogeochemistry of the Ross Sea. American Geophysical Union, 2003: 295-312.

    Google Scholar

    [39] Lee S, Hwang J, Ducklow H W, et al. Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya [J]. Geophysical Research Letters, 2017, 44(15): 7892-7899. doi: 10.1002/2017GL074646

    CrossRef Google Scholar

    [40] Collier R, Dymond J, Honjo S, et al. The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996-1998 [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2000, 47(15-16): 3491-3520. doi: 10.1016/S0967-0645(00)00076-X

    CrossRef Google Scholar

    [41] 杨和福. 棕囊藻的生物学概述: I. 形态分类和生理生态学[J]. 东海海洋, 2004, 22(1):49-63

    Google Scholar

    YANG Hefu. The biology of Phaeocystis: I. the morphology, physiology and ecology of Phaeocystis [J]. Donghai Marine Science, 2004, 22(1): 49-63.

    Google Scholar

    [42] Jacobs S S. On the nature and significance of the Antarctic Slope Front [J]. Marine Chemistry, 1991, 35(1-4): 9-24. doi: 10.1016/S0304-4203(09)90005-6

    CrossRef Google Scholar

    [43] Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance [J]. Earth and Planetary Science Letters, 2015, 414: 77-86. doi: 10.1016/j.jpgl.2015.01.004

    CrossRef Google Scholar

    [44] 丁玲, 邢磊, 赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9):981-989

    Google Scholar

    DING Ling, XING Lei, ZHAO Meixun. Applications of biomarkers for reconstructing phytoplankton productivity and community structure changes [J]. Advances in Earth Science, 2010, 25(9): 981-989.

    Google Scholar

    [45] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: a review of recent research developments [J]. Organic Geochemistry, 1998, 29(5-7): 1163-1179. doi: 10.1016/S0146-6380(98)00062-X

    CrossRef Google Scholar

    [46] Boon J J, Rijpstra W I C, De Lange F, et al. Black Sea sterol— a molecular fossil for dinoflagellate blooms [J]. Nature, 1979, 277(5692): 125-127. doi: 10.1038/277125a0

    CrossRef Google Scholar

    [47] Tao S Q, Xing L, Luo X F, et al. Alkenone distribution in surface sediments of the southern Yellow Sea and implications for the UKʹ 37 thermometer [J]. Geo-Marine Letters, 2012, 32(1): 61-71. doi: 10.1007/s00367-011-0251-1

    CrossRef Google Scholar

    [48] Otto A, Simpson M J. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western Canada [J]. Biogeochemistry, 2005, 74(3): 377-409. doi: 10.1007/s10533-004-5834-8

    CrossRef Google Scholar

    [49] Zhao M X, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa [J]. Organic Geochemistry, 2006, 37(1): 72-97. doi: 10.1016/j.orggeochem.2005.08.022

    CrossRef Google Scholar

    [50] Eglinton G, Hamilton R J. Leaf epicuticular waxes: the waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322

    CrossRef Google Scholar

    [51] Pearson A, Eglinton T I. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific Δ14C and δ13C data [J]. Organic Geochemistry, 2000, 31(11): 1103-1116. doi: 10.1016/S0146-6380(00)00121-2

    CrossRef Google Scholar

    [52] Collister J W, Lichtfouse E, Hieshima G, et al. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado) [J]. Organic Geochemistry, 1994, 21(6-7): 645-659. doi: 10.1016/0146-6380(94)90010-8

    CrossRef Google Scholar

    [53] Arrigo K R, Van Dijken G L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems [J]. Journal of Geophysical Resea-rch:Oceans, 2003, 108(C8): 3271. doi: 10.1029/2002JC001739

    CrossRef Google Scholar

    [54] Arrigo K R, Lowry K E, Van Dijken G L. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica [J]. Deep Sea Research II:Topical Studies in Oceanography, 2012, 71-76: 5-15. doi: 10.1016/j.dsr2.2012.03.006

    CrossRef Google Scholar

    [55] Popp B N, Trull T, Kenig F, et al. Controls on the carbon isotopic composition of Southern Ocean phytoplankton [J]. Global Biogeochemical Cycles, 1999, 13(4): 827-843. doi: 10.1029/1999GB900041

    CrossRef Google Scholar

    [56] Damsté J S S, Schouten S, Hopmans E C, et al. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota [J]. Journal of Lipid Research, 2002, 43(10): 1641-1651. doi: 10.1194/jlr.M200148-JLR200

    CrossRef Google Scholar

    [57] 杨和福. 棕囊藻的生物学概述: Ⅱ. 生理生化学[J]. 东海海洋, 2004, 22(3):34-47

    Google Scholar

    YANG Hefu. The biology of Phaeocystis: Ⅱ. The physiology and biochemistry of Phaeocystis [J]. Donghai Marine Science, 2004, 22(3): 34-47.

    Google Scholar

    [58] 邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报:自然科学版, 2009, 39(2):317-322

    Google Scholar

    XING Lei, ZHAO Meixun, ZHANG Hailong, et al. Biomarker records of phytoplankton community structure changes in the Yellow Sea over the last 200 years [J]. Periodical of Ocean University of China, 2009, 39(2): 317-322.

    Google Scholar

    [59] Goñi M A, Ruttenberg K C, Eglinton T I. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico [J]. Nature, 1997, 389(6648): 275-278. doi: 10.1038/38477

    CrossRef Google Scholar

    [60] Goñi M A, Montgomery S. Alkaline CuO oxidation with a microwave digestion system: lignin analyses of geochemical samples [J]. Analytical Chemistry, 2000, 72(14): 3116-3121. doi: 10.1021/ac991316w

    CrossRef Google Scholar

    [61] Goñi M A, Cathey M W, Kim Y H, et al. Fluxes and sources of suspended organic matter in an estuarine turbidity maximum region during low discharge conditions [J]. Estuarine, Coastal and Shelf Science, 2005, 63(4): 683-700. doi: 10.1016/j.ecss.2005.01.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(2647) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint