2022 Vol. 42, No. 4
Article Contents

ZHOU Zhengpeng, XIAO Wenshen, WANG Rujian, TENG Yuyang. Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002
Citation: ZHOU Zhengpeng, XIAO Wenshen, WANG Rujian, TENG Yuyang. Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002

Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications

More Information
  • The Ross Sea shelf is characterized by its highest primary productivity among the Antarctic marginal seas, and is a hotspot for studying ice-ocean-atmosphere interactions and carbon cycle. This study analyzed the contents of biogenic components such as biogenic silica (Opal), carbonate, total organic carbon (TOC), total nitrogen (TN), and organic carbon δ13C (δ13Corg) in 43 surface sediments collected during the 31st-35th Chinese Antarctic Research Expeditions on the Ross Sea shelf. Cluster analysis and factor analysis were performed on the resulted data in order to obtain their distribution patterns in relation to the environmental settings. Our results show that TOC, TN and Opal are the main variables for factor 1 representing the productivity of the water column. Their contents show high values in the polynyas on the southwest shelf, and on the southeast inner shelf, in contrast to low values in the Cape Adare and outer shelf, interpreted as related to concentrations of dissolved iron in the water. δ13Corg is the main variable for factor 2, with higher values in the Terra Nova Bay polynyas and the outer northeast shelf, and lower values in the troughs. The heavier δ13Corg is resulted from high primary productivity while the lighter δ13Corg mainly reflects terrestrial carbon accumulation from lateral transport. Carbonate is the main variable for factor 3 showing higher contents at Cape Adare and in the Ross Sea polynyas, and lower contents in the troughs and the south-eastern shelf, primarily related to its preservation.

  • 加载中
  • [1] Smith W O Jr, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea [J]. Annual Review Marine Science, 2014, 6: 469-487. doi: 10.1146/annurev-marine-010213-135114

    CrossRef Google Scholar

    [2] Morrison A K, Frölicher T L, Sarmiento J L. Upwelling in the Southern Ocean [J]. Physics Today, 2015, 68(1): 27-32. doi: 10.1063/PT.3.2654

    CrossRef Google Scholar

    [3] Tremblay J E, Smith W O Jr. Primary production and nutrient dynamics in polynyas [J]. Elsevier Oceanography Series, 2007, 74: 239-269.

    Google Scholar

    [4] Parish T R, Cassano J J, Seefeldt M W. Characteristics of the ross ice shelf air stream as depicted in Antarctic mesoscale prediction system simulations [J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D12): D12109. doi: 10.1029/2005JD006185

    CrossRef Google Scholar

    [5] Catalano G, Budillon G, La Ferla R, et al. The ross sea[M]//Liu K K, Atkinson L, Quinones R, et al. Carbon and nutrient Fluxes in Continental Margins: A Global Synthesis. New York: Springer-Verlag, 2010, 6: 303-318.

    Google Scholar

    [6] Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland [J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233. doi: 10.1006/ecss.1994.1015

    CrossRef Google Scholar

    [7] Emerson S, Hedges J I. Processes controlling the organic carbon content of open ocean sediments [J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621

    CrossRef Google Scholar

    [8] Stein R. Accumulation of organic carbon in marine sediments[M]. Berlin: Springer-Verlag, 1991: 217-320.

    Google Scholar

    [9] Hauck J, Gerdes D, Hillenbrand C D, et al. Distribution and mineralogy of carbonate sediments on Antarctic shelves [J]. Journal of Marine Systems, 2012, 90(1): 77-87. doi: 10.1016/j.jmarsys.2011.09.005

    CrossRef Google Scholar

    [10] Rack W, Price D, Haas C, et al. Sea ice thickness in the western Ross Sea [J]. Geophysical Research Letters, 2021, 48(1): e2020GL090866. doi: 10.1029/2020GL090866

    CrossRef Google Scholar

    [11] Arrigo K R, Worthen D L, Robinson D H. A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production [J]. Journal of Geophysical Research:Oceans, 2003, 108(C7): 3231. doi: 10.1029/2001JC000856

    CrossRef Google Scholar

    [12] Nelson D M, DeMaster D J, Dunbar R B, et al. Cycling of organic carbon and biogenic silica in the Southern Ocean: Estimates of water-column and sedimentary fluxes on the Ross Sea continental shelf [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18519-18532. doi: 10.1029/96JC01573

    CrossRef Google Scholar

    [13] Sweeney C, Hansell D A, Carlson C A, et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2000, 47(15-16): 3369-3394.

    Google Scholar

    [14] Marsay C M, Barrett P M, McGillicuddy D J, et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer [J]. Journal of Geophysical Research:Oceans, 2017, 122(8): 6371-6393. doi: 10.1002/2017JC013068

    CrossRef Google Scholar

    [15] Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM [J]. Quaternary Science Reviews, 2014, 100: 31-54. doi: 10.1016/j.quascirev.2013.08.020

    CrossRef Google Scholar

    [16] Orsi A H, Wiederwohl C L. A recount of Ross Sea waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2009, 56(13-14): 778-795. doi: 10.1016/j.dsr2.2008.10.033

    CrossRef Google Scholar

    [17] Peloquin J A, Smith W O Jr. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition [J]. Journal Geophysical Research:Oceans, 2007, 112(C8): C08013.

    Google Scholar

    [18] Sedwick P N, DiTullio G R, Mackey D J. Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters [J]. Journal of Geophysical Research:Oceans, 2000, 105(C5): 11321-11336. doi: 10.1029/2000JC000256

    CrossRef Google Scholar

    [19] Arrigo K R, Van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(1-3): 117-138. doi: 10.1016/j.dsr2.2003.04.003

    CrossRef Google Scholar

    [20] Smith W O, Nelson D M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field [J]. Science, 1985, 227(4683): 163-166. doi: 10.1126/science.227.4683.163

    CrossRef Google Scholar

    [21] Garcia H, Locarnini R A, Boyer T P, et al. Nutrients (phosphate, nitrate, silicate)[Z]. World Ocean Atlas 2005, 2010, 4.

    Google Scholar

    [22] Burckle L H. Distribution of opal in surface sediments, compiled from different sources[Z]. PANGAEA, 2001.

    Google Scholar

    [23] Andrews J T, Domack E W, Cunningham W L, et al. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica [J]. Quaternary Research, 1999, 52(2): 206-216. doi: 10.1006/qres.1999.2047

    CrossRef Google Scholar

    [24] Ohkouchi N, Eglinton T I. Radiocarbon constraint on relict organic carbon contributions to Ross Sea sediments [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04012.

    Google Scholar

    [25] Villinski J C, Dunbar R B, Mucciarone D A. Carbon 13/Carbon 12 ratios of sedimentary organic matter from the Ross Sea, Antarctica: A record of phytoplankton bloom dynamics [J]. Journal of Geophysical Research:Oceans, 2000, 105(C6): 14163-14172. doi: 10.1029/1999JC000309

    CrossRef Google Scholar

    [26] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    CrossRef Google Scholar

    [27] Arthur D, Vassilvitskii S. K-Means++: the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007. New Orleans, Louisiana, USA: ACM, 2007: 1027-1035.

    Google Scholar

    [28] Reddon J R, Jackson D N. A note on testing the sphericity hypothesis with Bartlett’s test [J]. Multivariate Experimental Clinical Research, 1984, 7(1): 49-52.

    Google Scholar

    [29] Kaiser H F, Rice J. Little Jiffy, Mark Iv [J]. Educational and Psychological Measurement, 1974, 34(1): 111-117. doi: 10.1177/001316447403400115

    CrossRef Google Scholar

    [30] 滕聿央, 王汝建. 南极罗斯海表层沉积物中的放射虫组合分布及与其他硅质生物关系和环境生态意义[J]. 微体古生物学报, 2019, 36(4):377-398

    Google Scholar

    TENG Yuyang, WANG Rujian. Biogenic silica and radiolarian assemblages in the surface sediments of Ross Sea, Antarctica and their implications on marine environment and ecology [J]. Acta Micropalaeontologica Sinica, 2019, 36(4): 377-398.

    Google Scholar

    [31] 黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5):97-108

    Google Scholar

    HUANG Mengxue, WANG Rujian, XIAO Wenshen, et al. Retreat process of ross ice shelf and hydrodynamic changes on northwestern ross continental shelf since the last glacial [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 97-108.

    Google Scholar

    [32] Langone L, Frignani M, Labbrozzi L, et al. Present-day biosiliceous sedimentation in the northwestern Ross Sea, Antarctica [J]. Journal of Marine Systems, 1998, 17(1-4): 459-470. doi: 10.1016/S0924-7963(98)00058-X

    CrossRef Google Scholar

    [33] Bentley M J, Cofaigh C Ó, Anderson J B, et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2014, 100: 1-9. doi: 10.1016/j.quascirev.2014.06.025

    CrossRef Google Scholar

    [34] Leventer A, Dunbar R B. Factors influencing the distribution of diatoms and other algae in the Ross Sea [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18489-18500. doi: 10.1029/96JC00204

    CrossRef Google Scholar

    [35] DeMaster D J, Ragueneau O, Nittrouer C A. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: The Ross Sea [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18501-18518. doi: 10.1029/96JC01634

    CrossRef Google Scholar

    [36] Winton V H L, Dunbar G B, Bertler N A N, et al. The contribution of aeolian sand and dust to iron fertilization of phytoplankton blooms in southwestern Ross Sea, Antarctica [J]. Global Biogeochemical Cycles, 2014, 28(4): 423-436. doi: 10.1002/2013GB004574

    CrossRef Google Scholar

    [37] Winton V H L, Dunbar G B, Atkins C B, et al. The origin of lithogenic sediment in the south-western Ross Sea and implications for iron fertilization [J]. Antarctic Science, 2016, 28(4): 250-260. doi: 10.1017/S095410201600002X

    CrossRef Google Scholar

    [38] DeJong H B, Dunbar R B. Air-sea CO2 exchange in the Ross Sea, Antarctica [J]. Journal of Geophysical Research:Oceans, 2017, 122(10): 8167-8181. doi: 10.1002/2017JC012853

    CrossRef Google Scholar

    [39] Tesi T, Belt S T, Gariboldi K, et al. Resolving sea ice dynamics in the north-western Ross Sea during the last 2.6 ka: From seasonal to millennial timescales [J]. Quaternary Science Reviews, 2020, 237: 106299. doi: 10.1016/j.quascirev.2020.106299

    CrossRef Google Scholar

    [40] Rivaro P, Ardini F, Vivado D, et al. Potential sources of particulate iron in surface and deep waters of the terra Nova Bay (Ross Sea, Antarctica) [J]. Water, 2020, 12(12): 3517. doi: 10.3390/w12123517

    CrossRef Google Scholar

    [41] Mack S L, Dinniman M S, McGillicuddy D J Jr, et al. Dissolved iron transport pathways in the Ross Sea: Influence of tides and horizontal resolution in a regional ocean model [J]. Journal of Marine Systems, 2017, 166: 73-86. doi: 10.1016/j.jmarsys.2016.10.008

    CrossRef Google Scholar

    [42] Salmon E, Hofmann E E, Dinniman M S, et al. Evaluation of iron sources in the Ross Sea [J]. Journal of Marine Systems, 2020, 212: 103429. doi: 10.1016/j.jmarsys.2020.103429

    CrossRef Google Scholar

    [43] De Baar H J W, Boyd P W, Coale K H, et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment [J]. Journal of Geophysical Research:Oceans, 2005, 110(9): C09S16.

    Google Scholar

    [44] Tsuda A, Takeda S, Saito H, et al. A mesoscale iron enrichment in the western subarctic pacific induces a large centric diatom bloom [J]. Science, 2003, 300(5621): 958-961. doi: 10.1126/science.1082000

    CrossRef Google Scholar

    [45] 任春燕, 陈敏, 高众勇, 等. 南极普里兹湾及其邻近海域悬浮颗粒有机物的碳同位素组成及其影响因素[J]. 海洋学报, 2015, 37(12):74-84

    Google Scholar

    REN Chunyan, CHEN Min, GAO Zhongyong, et al. Stable carbon isotopic composition of suspended particulate organic matter in the Prydz Bay and its adjacent areas [J]. Acta Oceanologica Sinica, 2015, 37(12): 74-84.

    Google Scholar

    [46] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material [J]. Earth-Science Reviews, 2006, 75(1-4): 29-57. doi: 10.1016/j.earscirev.2005.10.003

    CrossRef Google Scholar

    [47] Rivaro P, Ianni C, Raimondi L, et al. Analysis of physical and biogeochemical control mechanisms on summertime surface carbonate system variability in the western Ross Sea (Antarctica) using in situ and satellite data [J]. Remote Sensing, 2019, 11(3): 238. doi: 10.3390/rs11030238

    CrossRef Google Scholar

    [48] Smith W O Jr, Comiso J C. Influence of sea ice on primary production in the Southern Ocean: A satellite perspective [J]. Journal of Geophysical Research, 2008, 113(C5): C05S93.

    Google Scholar

    [49] Hunt B P V, Pakhomov E A, Hosie G W, et al. Pteropods in Southern ocean ecosystems [J]. Progress in Oceanography, 2008, 78(3): 193-221. doi: 10.1016/j.pocean.2008.06.001

    CrossRef Google Scholar

    [50] 韩喜彬, 赵军, 初凤友, 等. 南极半岛东北海域表层沉积有机质来源及其沉积环境[J]. 海洋学报, 2015, 37(8):26-38

    Google Scholar

    HAN Xibin, ZHAO Jun, CHU Fengyou, et al. The source of organic matter and its sedimentary environment of the bottom surface sediment in northeast waters to Antarctic Peninsula based on the biomarker features [J]. Acta Oceanologica Sinica, 2015, 37(8): 26-38.

    Google Scholar

    [51] Rivaro P, Messa R, Ianni C, et al. Distribution of total alkalinity and pH in the Ross Sea (Antarctica) waters during austral summer 2008 [J]. Polar Research, 2014, 33(1): 20403. doi: 10.3402/polar.v33.20403

    CrossRef Google Scholar

    [52] Bergamasco A, Defendi V, Budillon G, et al. Downslope flow observations near Cape Adare shelf-break [J]. Antarctic Science, 2004, 16(2): 199-204. doi: 10.1017/S0954102004001981

    CrossRef Google Scholar

    [53] Melis R, Salvi G. Foraminifer and ostracod occurrence in a cool-water carbonate factory of the cape Adare (Ross Sea, Antarctica): a key lecture for the climatic and oceanographic variations in the Last 30, 000 years [J]. Geosciences, 2020, 10(10): 413. doi: 10.3390/geosciences10100413

    CrossRef Google Scholar

    [54] Kim S, Lee J I, McKay R M, et al. Late Pleistocene paleoceanographic changes in the Ross Sea-Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2817) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint