2022 Vol. 42, No. 2
Article Contents

LI Jinlan, TIAN Jun. Effects of Sunda Shelf exposure and vegetation changes on land-atmosphere carbon exchange during the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 110-118. doi: 10.16562/j.cnki.0256-1492.2022021101
Citation: LI Jinlan, TIAN Jun. Effects of Sunda Shelf exposure and vegetation changes on land-atmosphere carbon exchange during the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 110-118. doi: 10.16562/j.cnki.0256-1492.2022021101

Effects of Sunda Shelf exposure and vegetation changes on land-atmosphere carbon exchange during the Last Glacial Maximum

More Information
  • Corresponding author: tianjun@tongji.edu.cn
  • The land exposure area of the Sunda Shelf in the southern South China Sea during the last glacial maximum (LGM) was nearly twice that in modern times. Was the Sunda Shelf a stronger carbon sink at that time? Though the study of the LGM carbon cycle depends on reliable vegetation reconstruction, both GOSAT satellite data and measured carbon density data utilized show that the role of different ecosystems in the carbon cycle could be very different. Whether there were tropical forests or savanna grassland on the Sunda Shelf during the LGM is a controversy. The land-atmosphere carbon exchange of the forest ecosystem is much greater than that of the grassland ecosystem. We used the Community Land Model (CLM4) to carry out two groups of sensitivity cases, aiming at quantifying the impacts of land area increase and vegetation distribution on land-atmosphere carbon exchange. Combining the pollen fossil evidence, our results showed that the exposed Sunda Shelf covered by the forest ecosystem in the LGM absorbed more carbon from the atmosphere at a rate of 0.16 PgC/a than in modern times. It indicated that the Sunda Shelf in LGM was a carbon sink, which was opposite to the role of other terrestrial carbon sources and was worthy of further study.

  • 加载中
  • [1] Houghton R A. Balancing the global carbon budget [J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347. doi: 10.1146/annurev.earth.35.031306.140057

    CrossRef Google Scholar

    [2] Pan Y D, Birdsey R A, Phillips O L, et al. The structure, distribution, and biomass of the world's forests [J]. Annual Review of Ecology, Evolution, and Systematics, 2013, 44: 593-622. doi: 10.1146/annurev-ecolsys-110512-135914

    CrossRef Google Scholar

    [3] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production [J]. Nature, 1993, 363(6426): 234-240. doi: 10.1038/363234a0

    CrossRef Google Scholar

    [4] Saatchi S S, Harris N L, Brown S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9899-9904. doi: 10.1073/pnas.1019576108

    CrossRef Google Scholar

    [5] Hooijer A, Page S, Canadell J G, et al. Current and future CO2 emissions from drained peatlands in Southeast Asia [J]. Biogeosciences, 2010, 7(5): 1505-1514. doi: 10.5194/bg-7-1505-2010

    CrossRef Google Scholar

    [6] Malhi Y. The carbon balance of tropical forest regions, 1990–2005 [J]. Current Opinion in Environmental Sustainability, 2010, 2(4): 237-244. doi: 10.1016/j.cosust.2010.08.002

    CrossRef Google Scholar

    [7] Tjia H D. The sunda shelf, southeast Asia [J]. Zeitschrift Für Geomorphologie, 1980, 24(4): 405-427.

    Google Scholar

    [8] De Deckker P, Tapper N J, van der Kaars S. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum [J]. Global and Planetary Change, 2003, 35(1-2): 25-35. doi: 10.1016/S0921-8181(02)00089-9

    CrossRef Google Scholar

    [9] Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia [J]. Climatic Change, 1991, 19(1-2): 53-61. doi: 10.1007/BF00142213

    CrossRef Google Scholar

    [10] Taylor D, Yen O H, Sanderson P G, et al. Late Quaternary peat formation and vegetation dynamics in a lowland tropical swamp; Nee Soon, Singapore [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 269-287. doi: 10.1016/S0031-0182(01)00249-8

    CrossRef Google Scholar

    [11] Sun X J, Li X, Luo Y L. Vegetation and climate on the sunda shelf of the South China Sea during the last Glactiation-Pollen results from station 17962 [J]. Acta Botanica Sinica, 2002, 44(6): 746-752.

    Google Scholar

    [12] Bird M I, Taylor D, Hunt C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? [J]. Quaternary Science Reviews, 2005, 24(20-21): 2228-2242. doi: 10.1016/j.quascirev.2005.04.004

    CrossRef Google Scholar

    [13] Wang X M, Sun X J, Wang P X, et al. Vegetation on the sunda shelf, South China Sea, during the last glacial maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008

    CrossRef Google Scholar

    [14] 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库[M]//王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社, 1996

    Google Scholar

    FANG Jingyun, LIU Guohua, XU Songling. Carbon pool of terrestrial ecosystem in China[M]//WANG Gengchen, WEN Yupu. Greenhouse Gas Concentration and Emission Monitoring and Related Processes. Beijing: China Environmental Science Press, 1996.

    Google Scholar

    [15] Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s [J]. Global Change Biology, 2007, 13(9): 1989-2007. doi: 10.1111/j.1365-2486.2007.01409.x

    CrossRef Google Scholar

    [16] 徐丽, 何念鹏. 中国南北样带典型森林土壤属性数据集[J]. 中国科学数据, 2019, 4(1):73-81 doi: 10.11922/sciencedb.602

    CrossRef Google Scholar

    XU Li, HE Nianpeng. A dataset of forest soil properties in north-south transect of eastern China [J]. Science Data Bank, 2019, 4(1): 73-81. doi: 10.11922/sciencedb.602

    CrossRef Google Scholar

    [17] Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320(5882): 1444-1449. doi: 10.1126/science.1155121

    CrossRef Google Scholar

    [18] Molengraaff G A F, Weber M. On the relation between the pleistocene glacial period and the origin of the Sunda sea (Java and South China-sea), and its influence on the distribution of coralreefs and on the land- and freshwater fauna [J]. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 1921, 23(1): 395-439.

    Google Scholar

    [19] 李金澜, 田军. 末次冰期南海南部暴露的巽他陆架是大气碳汇?[J]. 海洋地质与第四纪地质, 2018, 38(4):155-163

    Google Scholar

    LI Jinlan, TIAN Jun. The Sunda Shelf: a carbon sink during the last glacial period? [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 155-163.

    Google Scholar

    [20] Qian T T, Dai A G, Trenberth K E, et al. Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data and evaluations [J]. Journal of Hydrometeorology, 2006, 7(5): 953-975. doi: 10.1175/JHM540.1

    CrossRef Google Scholar

    [21] Thornton P E, Rosenbloom N A. Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model [J]. Ecological Modelling, 2005, 189(1-2): 25-48. doi: 10.1016/j.ecolmodel.2005.04.008

    CrossRef Google Scholar

    [22] Thomas H, Prowe A E F, Lima D I, et al. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades [J]. Global Biogeochemical Cycles, 2008, 22(4): GB4027.

    Google Scholar

    [23] Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009 [J]. Science, 2010, 329(5994): 940-943. doi: 10.1126/science.1192666

    CrossRef Google Scholar

    [24] Zhu L K, Southworth J. Disentangling the relationships between net primary production and precipitation in southern Africa savannas using satellite observations from 1982 to 2010 [J]. Remote Sensing, 2013, 5(8): 3803-3825. doi: 10.3390/rs5083803

    CrossRef Google Scholar

    [25] 戴璐, Yeok F S. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11):1147-1156 doi: 10.11867/j.issn.1001-8166.2017.11.1147

    CrossRef Google Scholar

    DAI Lu, Yeok F S. Was there savanna corridor on the exposed Sunda shelf during the last glacial period? [J]. Advances in Earth Science, 2017, 32(11): 1147-1156. doi: 10.11867/j.issn.1001-8166.2017.11.1147

    CrossRef Google Scholar

    [26] Lehmann C E R, Archibald S A, Hoffmann W A, et al. Deciphering the distribution of the savanna biome [J]. New Phytologist, 2011, 191(1): 197-209. doi: 10.1111/j.1469-8137.2011.03689.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(6)

Article Metrics

Article views(2378) PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint