2022 Vol. 42, No. 2
Article Contents

GAO Yifan, LI Lei, CHENG Linyan, GONG Guangchuan, ZHANG Wei, YANG Zhipeng, WANG Pan, YANG Lei. Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 101-109. doi: 10.16562/j.cnki.0256-1492.2021061501
Citation: GAO Yifan, LI Lei, CHENG Linyan, GONG Guangchuan, ZHANG Wei, YANG Zhipeng, WANG Pan, YANG Lei. Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 101-109. doi: 10.16562/j.cnki.0256-1492.2021061501

Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin

More Information
  • Through the fine interpretation of high-resolution 3D seismic data collected from the slope area of the Lingshui Sag in the Qiongdongnan Basin, extensively developed mass transport deposits (MTDs) have been discovered with the characteristics as follows: (1) The mass transport deposits usually show weak amplitude, low continuity, chaotic or blank seismic reflection with obvious erosion; (2) A large number of internal structures such as erosional scratches, thrust nappe structures, and squeezed ridges are observed in the body and toe parts of the deposits; (3) Mass transport induced thrust nappe structures caused by internal structural deformation are common and the surface morphology of the deformation is always characterized by continuous protrusions and depressions. Two stages of MTDs, i.e. MTDs1 and MTDs2, are found in the study area together with associated turbidites. The ridges 10~15 km long and 2~3 km wide formed by the MTDs1may change the morphology of seafloor, block the way of later turbidity currents and change the location of turbidites.

  • 加载中
  • [1] Arthur M R, Gani M R. Submarine channel and lobe hidden inside mass-transport deposits in the northern Gulf of Mexico [J]. Results in Geophysical Sciences, 2021, 5: 100013. doi: 10.1016/j.ringps.2021.100013

    CrossRef Google Scholar

    [2] 李磊, 王英民, 张莲美, 等. 块体搬运复合体的识别、演化及其油气勘探意义[J]. 沉积学报, 2010, 28(1):76-82

    Google Scholar

    LI Lei, WANG Yingmin, ZHANG Lianmei, et al. Identification and evolution of mass transport complexes and its significance for oil and gas exploration [J]. Acta Sedimentologica Sinica, 2010, 28(1): 76-82.

    Google Scholar

    [3] Nwoko J, Kane I, Huuse M. Mass transport deposit (MTD) relief as a control on post-MTD sedimentation: Insights from the Taranaki Basin, offshore New Zealand [J]. Marine and Petroleum Geology, 2020, 120: 104489. doi: 10.1016/j.marpetgeo.2020.104489

    CrossRef Google Scholar

    [4] 王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009, 29(5):65-72

    Google Scholar

    WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large quaternary mass transport depositions in the slope of South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 65-72.

    Google Scholar

    [5] Le Goff J, Slootman A, Mulder T, et al. On the architecture of intra-formational Mass-Transport Deposits: Insights from the carbonate slopes of Great Bahama Bank and the Apulian Carbonate Platform [J]. Marine Geology, 2020, 427: 106205. doi: 10.1016/j.margeo.2020.106205

    CrossRef Google Scholar

    [6] Jablonská D, Di Celma C, Korneva I, et al. Mass-transport deposits within basinal carbonates from southern Italy [J]. Italian Journal of Geosciences, 2016, 135(1): 30-40. doi: 10.3301/IJG.2014.51

    CrossRef Google Scholar

    [7] 何玉林, 匡增桂, 徐梦婕. 北康盆地第四纪块体搬运沉积地震反射特征及成因机制[J]. 地质科技情报, 2018, 37(4):258-268

    Google Scholar

    HE Yulin, KUANG Zenggui, XU Mengjie. Seismic reflection characteristics and triggering mechanism of mass transport deposits of Quaternary in Beikang Basin [J]. Bulletin of Geological Science and Technology, 2018, 37(4): 258-268.

    Google Scholar

    [8] 秦磊, 毛金昕, 倪凤玲, 等. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6):632-642

    Google Scholar

    QIN Lei, MAO Jinxin, NI Fengling, et al. A brief introduction to deep-water mass-transport complexes: structures, genetic classifications and identification methods [J]. Advances in Earth Science, 2020, 35(6): 632-642.

    Google Scholar

    [9] Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235. doi: 10.1306/09011514210

    CrossRef Google Scholar

    [10] 苏明, 解习农, 王振峰, 等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报, 2013, 34(3):467-478 doi: 10.7623/syxb201303007

    CrossRef Google Scholar

    SU Ming, XIE Xinong, WANG Zhenfeng, et al. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea [J]. Acta Petrolei Sinica, 2013, 34(3): 467-478. doi: 10.7623/syxb201303007

    CrossRef Google Scholar

    [11] 李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1):110-118

    Google Scholar

    LI Anqi, YE Qi, WANG Zhenzhen, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin [J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118.

    Google Scholar

    [12] 罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6):42-50

    Google Scholar

    LUO Jinhua, ZHU Peimin. Gravity induced deposits in the continental slope of Qiongdongnan Basin Based on ultrahigh resolution AUV data [J]. Bulletin of Geological Science and Technology, 2019, 38(6): 42-50.

    Google Scholar

    [13] 李伟, 吴时国, 王秀娟, 等. 琼东南盆地中央峡谷上新统块体搬运沉积体系地震特征及其分布[J]. 海洋地质与第四纪地质, 2013, 33(2):9-15

    Google Scholar

    LI Wei, WU Guoshi, WANG Xiujuan, et al. Seismic characteristics and distribution of pliocene mass transport deposits in central canyon of Qiongdongnan Basin [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 9-15.

    Google Scholar

    [14] 杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1):88-111

    Google Scholar

    YANG Tian, CAO Yingchang, TIAN Jingchun. Discussion on research of Deep-water gravity flow deposition in lacustrine basin [J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.

    Google Scholar

    [15] 秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1):140-152 doi: 10.11743/ogg20180114

    CrossRef Google Scholar

    QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits [J]. Oil & Gas Geology, 2018, 39(1): 140-152. doi: 10.11743/ogg20180114

    CrossRef Google Scholar

    [16] 李磊, 李彬, 王英民, 等. 块体搬运沉积体系地震地貌及沉积构型: 以珠江口盆地和尼日尔三角洲盆地为例[J]. 中南大学学报:自然科学版, 2013, 44(6):2410-2416

    Google Scholar

    LI Lei, LI Bin, WANG Yingmin, et al. Seismic geomorphology and sedimentary architectures of mass transport deposits: Cases from Pearl River Mouth Basin and Niger Delta Basin [J]. Journal of Central South University:Science and Technology, 2013, 44(6): 2410-2416.

    Google Scholar

    [17] 孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015, 34(3):30-36

    Google Scholar

    SUN Guotong. A review of deep-water gravity-flow deposition research [J]. Geological Science and Technology Information, 2015, 34(3): 30-36.

    Google Scholar

    [18] 冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5):25-35

    Google Scholar

    FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35.

    Google Scholar

    [19] 李磊, 王英民, 徐强, 等. 南海北部白云凹陷21Ma深水重力流沉积体系[J]. 石油学报, 2012, 33(5):798-806 doi: 10.7623/syxb201205008

    CrossRef Google Scholar

    LI Lei, WANG Yingmin, XU Qiang, et al. 21Ma deepwater gravity flow depositional system in Baiyun sag, northern South China Sea [J]. Acta Petrolei Sinica, 2012, 33(5): 798-806. doi: 10.7623/syxb201205008

    CrossRef Google Scholar

    [20] Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011

    CrossRef Google Scholar

    [21] Nwoko J, Kane I, Huuse M. Megaclasts within mass-transport deposits: their origin, characteristics and effect on substrates and succeeding flows [J]. Geological Society, London, Special Publications, 2020, 500(1): 515-530. doi: 10.1144/SP500-2019-146

    CrossRef Google Scholar

    [22] Bull S, Browne G H, Arnot M J, et al. Influence of Mass Transport Deposit (MTD) surface topography on deep-water deposition: an example from a predominantly fine-grained continental margin, New Zealand [J]. Geological Society, London, Special Publications, 2020, 500(1): 147-171. doi: 10.1144/SP500-2019-192

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(2411) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint