2022 Vol. 42, No. 2
Article Contents

HUANG Cheng, WU Nengyou, WU Xiao, LIU Shiqiao, ZHANG Jingwei, XU Cheng, LIU Liang, DONG Xinzhu, CHEN Liang. Temporal-spatial variation characteristics and the controlling factors of temperature and salinity structure in Zhongsha Islands sea area of the South China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 1-14. doi: 10.16562/j.cnki.0256-1492.2021111301
Citation: HUANG Cheng, WU Nengyou, WU Xiao, LIU Shiqiao, ZHANG Jingwei, XU Cheng, LIU Liang, DONG Xinzhu, CHEN Liang. Temporal-spatial variation characteristics and the controlling factors of temperature and salinity structure in Zhongsha Islands sea area of the South China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 1-14. doi: 10.16562/j.cnki.0256-1492.2021111301

Temporal-spatial variation characteristics and the controlling factors of temperature and salinity structure in Zhongsha Islands sea area of the South China Sea

  • The statistical analysis results of CTD measured data of water mass in summer and autumn from the sea area of the Zhongsha Islands show that the sea surface temperature of seawater in the study area is between 30.0 and 31.2 °C, and the highest temperature distributed in the platform of the Zhongsha Islands. The sea surface salinity is from 33.6 to 34.1 PSU, and the highest salinity distributed near the Dong Island. The bottom temperature is from 1 to 25 °C, and salinity from 34.1 to 35.2 PSU, the highest salinity distributed in the southeast corner of the study area. In general, the temperature-salinity structure of the study area is characterized by high temperature, low salt in the surface layer and low temperature, high salt in the bottom layer, and the depth of mixed layer is between 20 and 90 m. The vertical velocity of surface, middle and bottom water in the study area is different, and the velocity is between 0.01 and 0.22 m/s. The seasonal variation characteristics of temperature and salinity in the study area were analyzed according to the FVCOM model. In winter, the sea surface temperature in the south of the study area was significantly higher than that in the north, and the temperature difference between the north and south was obvious. In summer, the distribution of sea surface temperature and salinity is obviously affected by typhoon, and the spatial distribution of sea surface temperature tends to be uniform. The numerical simulation results show that the intensity of flow field in the study area is strength in winter and summer, and weak in spring and autumn. The simulation results also show that extreme weather has a significant effect on the temperature and salinity structure in the study area in a short term, which is manifested as the decrease of sea surface temperature, the increase of mixed layer depth, and the enhancement of vertical mixing effect of water body.

  • 加载中
  • [1] 魏晓, 高红芳. 南海中部海域夏季水团温盐分布特征[J]. 海洋地质前沿, 2015, 31(8):25-33,40

    Google Scholar

    WEI Xiao, GAO Hongfang. Temperature and salinity structures of the central-eastern South China Sea [J]. Marine Geology Frontiers, 2015, 31(8): 25-33,40.

    Google Scholar

    [2] Qu T D, Du Y, Meyers G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea [J]. Geophysical Research Letters, 2005, 32(24): L24609. doi: 10.1029/2005GL024698

    CrossRef Google Scholar

    [3] 高荣珍, 王东晓, 王卫强, 等. 南海上层海洋热结构的年循环与半年循环[J]. 大气科学, 2003, 27(3):345-353 doi: 10.3878/j.issn.1006-9895.2003.03.05

    CrossRef Google Scholar

    GAO Rongzhen, WANG Dongxiao, WANG Weiqing, et al. Annual and Semi-Annual cycles of the upper thermal structure in the South China Sea [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(3): 345-353. doi: 10.3878/j.issn.1006-9895.2003.03.05

    CrossRef Google Scholar

    [4] 王东晓, 陈举, 陈荣裕, 等. 2000年8月南海中部与南部海洋温、盐与环流特征[J]. 海洋与湖沼, 2004, 35(2):97-109 doi: 10.3321/j.issn:0029-814X.2004.02.001

    CrossRef Google Scholar

    WANG Dongxiao, CHEN Jiu, CHEN Rongyu, et al. Hydrographic and circulation characteristics in middle and southern South China Sea in summer, 2000 [J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 97-109. doi: 10.3321/j.issn:0029-814X.2004.02.001

    CrossRef Google Scholar

    [5] 刘长建, 杜岩, 张庆荣, 等. 南海次表层和中层水团年平均和季节变化特征[J]. 海洋与湖沼, 2008, 39(1):55-64 doi: 10.3321/j.issn:0029-814X.2008.01.009

    CrossRef Google Scholar

    LIU Changjian, DU Yan, ZHANG Qingrong, et al. Seasonal variation of subsurface and intermediate water masses in the South China Sea [J]. Oceanologia et Limnologia Sinica, 2008, 39(1): 55-64. doi: 10.3321/j.issn:0029-814X.2008.01.009

    CrossRef Google Scholar

    [6] 邢彩盈, 朱晶晶, 吴胜安. 南海区域热状况的气候变化特征分析[J]. 海洋预报, 2018, 35(6):13-23 doi: 10.11737/j.issn.1003-0239.2018.06.002

    CrossRef Google Scholar

    XING Caiying, ZHU Jingjing, WU Sheng’an. Climatic change characteristics of thermal condition in the South China Sea [J]. Marine Forecasts, 2018, 35(6): 13-23. doi: 10.11737/j.issn.1003-0239.2018.06.002

    CrossRef Google Scholar

    [7] 汪斯毓, 王仕胜, 刘艳锐, 等. 中沙海槽盆地构造与沉积作用及其对远端裂陷盆地演化的启示[J/OL]. 地球科学, 2021: 1-15. (2021-06-28). http://kns.cnki.net/kcms/detail/42.1874.P.20210628.1156.010.html

    Google Scholar

    WANG Siyu, WANG Shisheng, LIU Yanrui, et al. Tectonics and sedimentation of the Zhongsha trough basin: implication to the basin evolution in distal rifting margin[J/OL]. Earth Science, 2021: 1-15. (2021-06-28). http://kns.cnki.net/kcms/detail/42.1874.P.20210628.1156.010.html.

    Google Scholar

    [8] 陈俊锦, 刘时桥, 汪斯毓, 等. 中沙海槽重力流沉积发育特征及成因机制[J]. 中山大学学报(自然科学版), 2022, 61(1):39-54

    Google Scholar

    CHEN Junjin, LIU Shiqiao, WANG Siyu, et al. Characteristics and mechanism of the development of gravity flow deposits in Zhongsha Trough [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(1): 39-54.

    Google Scholar

    [9] 黎雨晗, 黄海波, 丘学林, 等. 中沙海域的广角与多道地震探测[J]. 地球物理学报, 2020, 63(4):1523-1537 doi: 10.6038/cjg2020N0259

    CrossRef Google Scholar

    LI Yuhan, HUANG Haibo, QIU Xuelin, et al. Wide-angle and multi-channel seismic surveys in Zhongsha waters [J]. Chinese Journal of Geophysics, 2020, 63(4): 1523-1537. doi: 10.6038/cjg2020N0259

    CrossRef Google Scholar

    [10] 赵斌, 高红芳, 张衡, 等. 基于深度域地震成像的中沙海槽盆地东北部结构构造研究[J]. 热带海洋学报, 2019, 38(2):95-102

    Google Scholar

    ZHAO Bin, GAO Hongfang, ZHANG Heng, et al. Structure study of the northeastern Zhongsha Trough Basin in the South China Sea based on prestack depth migration seismic imaging [J]. Journal of Tropical Oceanography, 2019, 38(2): 95-102.

    Google Scholar

    [11] 鄢全树, 石学法, 王昆山. 中沙群岛附近海域沉积物中的轻矿物分区及物质来源[J]. 海洋学报, 2007, 29(4):97-104

    Google Scholar

    YAN Quanshu, SHI Xuefa, WANG Kunshan. Mineral provinces and matter source in surface sediments near the Zhongsha Islands in the South China Sea [J]. Acta Oceanologica Sinica, 2007, 29(4): 97-104.

    Google Scholar

    [12] 鄢全树, 王昆山, 石学法. 中沙群岛近海表层沉积物重矿物组合分区及物质来源[J]. 海洋地质与第四纪地质, 2008, 28(1):17-24

    Google Scholar

    YAN Quanshu, WANG Kunshan, SHI Xuefa. Provinces and provenance of heavy minerals in surface sediments of the sea area near Zhongsha Islands in South China Sea [J]. Marine Geology & Quaternary Geology, 2008, 28(1): 17-24.

    Google Scholar

    [13] 张江勇, 彭学超, 张玉兰, 等. 南海中沙群岛以北至陆坡表层沉积物碳酸钙含量的分布[J]. 热带地理, 2011, 31(2):125-132 doi: 10.3969/j.issn.1001-5221.2011.02.002

    CrossRef Google Scholar

    ZHANG Jiangyong, PENG Xuechao, ZHANG Yulan, et al. Distribution of carbonate content in surface sediment from north of Zhongsha Islands to Northern slope in the South China Sea [J]. Tropical Geography, 2011, 31(2): 125-132. doi: 10.3969/j.issn.1001-5221.2011.02.002

    CrossRef Google Scholar

    [14] 王璐, 余克服, 王英辉, 等. 南海中沙群岛、西沙群岛珊瑚岛礁区海水重金属的分布特征[J]. 热带地理, 2017, 37(5):718-727

    Google Scholar

    WANG Lu, YU Kefu, WANG Yinghui, et al. Distribution characteristic of heavy metals in coral reefs located in the Zhongsha Islands and Xisha Islands of South China Sea [J]. Tropical Geography, 2017, 37(5): 718-727.

    Google Scholar

    [15] 黄磊, 高红芳. 夏季季风转换期间中沙群岛附近海域的温盐分布特征[J]. 南海地质研究, 2012(1):49-56

    Google Scholar

    HUANG Lei, GAO Hongfang. Analyses on temperature and salinity distributions in Zhongsha Islands waters during spring to summer monsoon transition [J]. Gresearch of Eological South China Sea, 2012(1): 49-56.

    Google Scholar

    [16] 田永青, 黄洪辉, 巩秀玉, 等. 2014年春季南海中沙群岛北部海域的低温高盐水及其形成机制[J]. 热带海洋学报, 2016, 35(2):1-9 doi: 10.11978/2014113

    CrossRef Google Scholar

    TIAN Yongqing, HUANG Honghui, GONG Xiuyu, et al. The formation mechanism of the low temperature and high salinity water mass near the Zhongsha Islands in the South China Sea in March 2014 [J]. Journal of Tropical Oceanography, 2016, 35(2): 1-9. doi: 10.11978/2014113

    CrossRef Google Scholar

    [17] 李风岐, 苏育嵩. 海洋水团分析[M]. 青岛: 青岛海洋大学出版社, 1999

    Google Scholar

    LI Fengqi, SU Yusong. Water Mass Analysis[M]. Qingdao: Qingdao Ocean University Press, 1999.

    Google Scholar

    [18] 李娟, 左军成, 李艳芳, 等. 南海海表温度的低频变化及影响因素[J]. 河海大学学报:自然科学版, 2011, 39(5):575-582

    Google Scholar

    LI Juan, ZUO Juncheng, LI Yanfang, et al. Low-frequency variation and influence factors of sea surface temperature in South China Sea [J]. Journal of Hohai University:Natural Sciences, 2011, 39(5): 575-582.

    Google Scholar

    [19] 邱婷, 左军成, 王鼎琦, 等. 南海海表温度气候变异及对局地台风的影响[J]. 海洋科学进展, 2017, 35(1):32-39 doi: 10.3969/j.issn.1671-6647.2017.01.004

    CrossRef Google Scholar

    QIU Ting, ZUO Juncheng, WANG Dingqi, et al. Variation of Climatological Sea Surface Temperature and its effect on local typhoon activities in the South China Sea [J]. Advances in Marine Science, 2017, 35(1): 32-39. doi: 10.3969/j.issn.1671-6647.2017.01.004

    CrossRef Google Scholar

    [20] 黄金森. 中沙环礁特征[J]. 海洋地质与第四纪地质, 1987, 7(2):21-24

    Google Scholar

    HUANG Jinsen. Features of the ZhongSha atoll in the South China Sea [J]. Marine Geology & Quaternary Geology, 1987, 7(2): 21-24.

    Google Scholar

    [21] 徐子英, 汪俊, 高红芳, 等. 中沙地块南部断裂发育特征及其成因机制[J]. 中国地质, 2020, 47(5):1438-1446

    Google Scholar

    XU Ziying, WANG Jun, GAO Hongfang, et al. The characteristics and formation mechanism of the faults in the southern part of the Zhongsha Bank [J]. Geology in China, 2020, 47(5): 1438-1446.

    Google Scholar

    [22] Peel M C, Finlayson B L, Mcmahon T A. Updated world map of the Köppen-Geiger climate classification [J]. Hydrology and Earth System Sciences, 2007, 11(5): 1633-1644. doi: 10.5194/hess-11-1633-2007

    CrossRef Google Scholar

    [23] 陈史坚. 南海气温、表层海温分布特点的初步研究[J]. 海洋通报, 1983, 2(4):9-17

    Google Scholar

    CHEN Shijian. A preliminary study of the characteristics of the distribution of air and sea surface temperatures in the South China Sea [J]. Marine Science Bulletin, 1983, 2(4): 9-17.

    Google Scholar

    [24] Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean Model (FVCOM) system [J]. Oceanography, 2006, 19(1): 78-89. doi: 10.5670/oceanog.2006.92

    CrossRef Google Scholar

    [25] GAO S, LV X Q, WANG H T. Sea surface temperature simulation of tropical and north pacific basins using a hybrid coordinate ocean model (HYCOM) [J]. Marine Science Bulletin, 2008, 10(1): 1-13.

    Google Scholar

    [26] WU X, WU H, WANG H J, et al. Novel, repeated surveys reveal new insights on sediment flux through a narrow strait, Bohai, China [J]. Journal of Geophysical Research:Oceans, 2019, 124(10): 6927-6941. doi: 10.1029/2019JC015293

    CrossRef Google Scholar

    [27] 王东晓, 杜岩, 施平. 南海上层物理海洋学气候图集[M]. 北京: 气象出版社, 2002

    Google Scholar

    WANG Dongxiao, DU Yan, SHI Ping. Climatological Atlas of Physical Oceanography in the Upper Layer of the South China Sea[M]. Beijing: Meteorological Press, 2002.

    Google Scholar

    [28] 肖潺, 原韦华, 李建, 等. 南海秋雨气候特征分析[J]. 气候与环境研究, 2013, 18(6):693-700 doi: 10.3878/j.issn.1006-9585.2013.12163

    CrossRef Google Scholar

    XIAO Chan, YUAN Weihua, LI Jian, et al. Preliminary study of autumn rain in the South China Sea [J]. Climatic and Environmental Research, 2013, 18(6): 693-700. doi: 10.3878/j.issn.1006-9585.2013.12163

    CrossRef Google Scholar

    [29] 徐宾, 宇婧婧, 张雷, 等. 全球海表温度融合研究进展[J]. 气象科技进展, 2018, 8(1):164-170 doi: 10.3969/j.issn.2095-1973.2018.01.022

    CrossRef Google Scholar

    XU Bin, YU Jingjing, ZHANG Lei, et al. Research progress of global sea surface temperature fusion [J]. Advances in Meteorological Science and Technology, 2018, 8(1): 164-170. doi: 10.3969/j.issn.2095-1973.2018.01.022

    CrossRef Google Scholar

    [30] 李根. 海气界面热通量变化趋势及其与SST的关系[D]. 中国科学技术大学博士学位论文, 2012: 1-121

    Google Scholar

    LI Gen. Trend variability in Air-Sea fluxes and their relationship with SST[D]. Doctor Dissertation of University of Science and Technology of China, 2012: 1-121.

    Google Scholar

    [31] 秦曾灏. 海洋在气候与气候变化中的地位和作用[J]. 海洋通报, 1991, 10(4):85-90

    Google Scholar

    QIN Zenghao. Significance of ocean to global meteorological process and local climatological process [J]. Marine Science Bulletin, 1991, 10(4): 85-90.

    Google Scholar

    [32] 聂宇华, 詹杰民, 陈植武. 南海表层环流和热结构特征的数值模拟与影响因素分析[J]. 中山大学学报:自然科学版, 2011, 50(2):134-138

    Google Scholar

    NIE Yuhua, ZHAN Jiemin, CHEN Zhiwu. Simulation and influence factor analysis of Circulation and thermal structure of the surface layer of the South China Sea [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(2): 134-138.

    Google Scholar

    [33] Kwon Y O, Riser S C. The ocean response to the hurricane and tropical storm in North Atlantic during 1997-1999[R]. Washington DC: University of Washington, 2003.

    Google Scholar

    [34] 付东洋, 潘德炉, 丁又专, 等. 台风对海洋叶绿素a浓度影响的定量遥感初探[J]. 海洋学报, 2009, 31(3):46-56

    Google Scholar

    FU Dongyang, PAN Delu, DING Youzhuan, et al. Quantitative study of effects of the sea chlorophyll-a concentration by typhoon based on remote-sensing [J]. Acta Oceanologica Sinica, 2009, 31(3): 46-56.

    Google Scholar

    [35] Lin I I, Liu W T, Wu C C, et al. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling [J]. Geophysical Research Letters, 2003, 30(3): 1131. doi: 10.1029/2002GL015674

    CrossRef Google Scholar

    [36] 王凡, 赵永平, 冯志纲, 等. 1998年春夏南海温盐结构及其变化特征[J]. 海洋学报, 2001, 23(5):1-13

    Google Scholar

    WANG Fan, ZHAO Yongping, FENG Zhigang, et al. Thermohaline structure and variation of the South China Sea in the spring and summer of 1998 [J]. Acta Oceanologica Sinica, 2001, 23(5): 1-13.

    Google Scholar

    [37] Lin Y C, Oey L Y. Rainfall-enhanced blooming in typhoon wakes [J]. Scientific Reports, 2016, 6(1): 31310. doi: 10.1038/srep31310

    CrossRef Google Scholar

    [38] Glenn S M, Miles G N, Seroka G N, et al. Stratified coastal ocean interactions with tropical cyclones [J]. Natrue Communications, 2016, 7(1): 10887. doi: 10.1038/ncomms10887

    CrossRef Google Scholar

    [39] Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf [J]. Marine Geology, 2021, 440: 106578. doi: 10.1016/j.margeo.2021.106578

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views(3938) PDF downloads(97) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint