2022 Vol. 42, No. 2
Article Contents

CHEN Junjin, ZHANG Jingwei, LIU Shiqiao, CHEN Wanli, QIN Yongpeng, WU Shiguo. Grain size distribution pattern of surface sediments and its implications for transportation trend: A case from the waters off Zhongsha Islands, the South China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 15-27. doi: 10.16562/j.cnki.0256-1492.2021090901
Citation: CHEN Junjin, ZHANG Jingwei, LIU Shiqiao, CHEN Wanli, QIN Yongpeng, WU Shiguo. Grain size distribution pattern of surface sediments and its implications for transportation trend: A case from the waters off Zhongsha Islands, the South China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 15-27. doi: 10.16562/j.cnki.0256-1492.2021090901

Grain size distribution pattern of surface sediments and its implications for transportation trend: A case from the waters off Zhongsha Islands, the South China Sea

More Information
  • 232 surface sediment samples taken from offshore Zhongsha Islands were analyzed so as to better understand the sources, depositional environment and transporting patterns of the sediments. 6 types of sediments are recognized. i.e. sand, silty sand, sandy silt, silt, sandy mud and mud, dominated by sandy mud and mud. The coarser sediments, which usually have higher sorting, are mainly distributed in the water areas surrounding the Islands. Cluster analysis and principal component analysis are used for the study of component contents, grain size parameters and water depth. In consideration of the influences of sediment sources and seabed topography, the study area is divided into five depositional subareas: platform, platform terrace, slope around platform, trough and ridge, and deep-sea basin subareas. In combination with the depositional environment classification, grain size trend analysis is conducted. The results suggest that the sediments are mainly provided by the Zhongsha platform and the Xisha uplift, dispersed in surrounding waters, and finally deposited in the Zhongsha Trough. The sediment transportation is jointly influenced by sediment sources, seabed topography and water hydrodynamic conditions, under the control of monsoon, tide, wave and ocean current.

  • 加载中
  • [1] Pedreros R, Howa H L, Michel D. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas [J]. Marine Geology, 1996, 135(1-4): 35-49. doi: 10.1016/S0025-3227(96)00042-4

    CrossRef Google Scholar

    [2] Folk R L. A review of grain‐size parameters [J]. Sedimentology, 1966, 6(2): 73-93. doi: 10.1111/j.1365-3091.1966.tb01572.x

    CrossRef Google Scholar

    [3] McLaren P. An Interpretation of Trends in Grain Size Measures [J]. Journal of Sedimentary Research, 1981, 51(2): 611-624.

    Google Scholar

    [4] McLaren P, Bowles D. The effects of sediment transport on grain-size distributions [J]. Journal of Sedimentary Research, 1985, 55(4): 457-470.

    Google Scholar

    [5] Asselman N E M. Grain-size trends used to assess the effective discharge for floodplain sedimentation, River Waal, the Netherlands [J]. Journal of Sedimentary Research, 1999, 69(1): 51-61. doi: 10.2110/jsr.69.51

    CrossRef Google Scholar

    [6] Friedman G M. Distinction between dune, beach, and river sands from their textural characteristics [J]. Journal of Sedimentary Research, 1961, 31(4): 514-529.

    Google Scholar

    [7] Visher G S. Grain Size Distributions and Depositional Processes [J]. Journal Of Sedimentary Research, 1969, 39(3): 1074-1106.

    Google Scholar

    [8] Plomaritis T A, Paphitis D, Collins M. The use of grain size trend analysis in macrotidal areas with breakwaters: Implications of settling velocity and spatial sampling density [J]. Marine Geology, 2008, 253(3-4): 132-148. doi: 10.1016/j.margeo.2008.05.003

    CrossRef Google Scholar

    [9] Cheng P, Gao S, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis [J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 203-212. doi: 10.1016/j.ecss.2003.12.009

    CrossRef Google Scholar

    [10] Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors" [J]. Sedimentary Geology, 1992, 80(1-2): 47-60.

    Google Scholar

    [11] Gao S, Collins M B. Analysis of grain size trends, for defining sediment transport pathways in marine environments [J]. Journal of Coastal Research, 1994, 10(1): 70-78.

    Google Scholar

    [12] Balsinha M, Fernandes C, Oliveira A, et al. Sediment transport patterns on the Estremadura Spur continental shelf: Insights from grain-size trend analysis [J]. Journal of Sea Research, 2014, 93: 28-32. doi: 10.1016/j.seares.2014.04.001

    CrossRef Google Scholar

    [13] Liang J, Liu J, Xu G, et al. Grain-size characteristics and net transport patterns of surficial sediments in the Zhejiang nearshore area, East China Sea [J]. Oceanologia, 2020, 62(1): 12-22. doi: 10.1016/j.oceano.2019.06.002

    CrossRef Google Scholar

    [14] Wang C T, Chen M, Qi H S, et al. Grain-Size Distribution of Surface Sediments in the Chanthaburi Coast, Thailand and Implications for the Sedimentary Dynamic Environment [J]. Journal of Marine Science and Engineering, 2020, 8(4): 242. doi: 10.3390/jmse8040242

    CrossRef Google Scholar

    [15] Liu J T, Liu K J, Huang J C. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan [J]. Marine Geology, 2002, 181(4): 357-386. doi: 10.1016/S0025-3227(01)00219-5

    CrossRef Google Scholar

    [16] Sánchez A, Shumilin E, Rodríguez-Figueroa G. Sediment transport patterns inferred from grain size trends and trace metal dispersion near the Santa Rosalía mining district, Gulf of California [J]. Sedimentary Geology, 2019, 380: 158-163. doi: 10.1016/j.sedgeo.2018.12.006

    CrossRef Google Scholar

    [17] Zhang W, Zheng J H, Ji X M, et al. Surficial sediment distribution and the associated net sediment transport pattern in the Pearl River Estuary, South China [J]. Continental Shelf Research, 2013, 61-62: 41-51. doi: 10.1016/j.csr.2013.04.011

    CrossRef Google Scholar

    [18] Li T, Li T J. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis [J]. Geo-Marine Letters, 2018, 38(2): 167-178. doi: 10.1007/s00367-017-0518-2

    CrossRef Google Scholar

    [19] 李泽文, 栾振东, 阎军, 等. 南海北部外陆架表层沉积物粒度参数特征及物源分析[J]. 海洋科学, 2011, 35(12):92-100

    Google Scholar

    LI Zewen, LUAN Zhendong, YAN Jun, et al. Characterization of grain size parameters and the provenance analysis of the surface sediment in the outer shelf of the northern South China Sea [J]. Marine Sciences, 2011, 35(12): 92-100.

    Google Scholar

    [20] 张洪运, 庄丽华, 阎军, 等. 南海北部陆架坡折附近表层沉积物的粒度特征和其输运趋势[J]. 海洋科学, 2019, 43(10):96-105

    Google Scholar

    ZHANG Hongyun, ZHUANG Lihua, YAN Jun, et al. Grain size characteristics of surface sediments and their transport patterns near the shelf break of the northern South China Sea [J]. Marine Sciences, 2019, 43(10): 96-105.

    Google Scholar

    [21] 李亮, 何其江, 龙根元, 等. 南海宣德海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质, 2017, 37(6):140-148

    Google Scholar

    LI Liang, HE Qijiang, LONG Genyuan, et al. Sediment grain size distribution pattern and transportation trend in the Xuande Water, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 140-148.

    Google Scholar

    [22] 朱文聪, 李娜娜, 艾红, 等. 西沙和中沙群岛海域生物多样性特点[J]. 广东农业科学, 2010, 37(12):1-6 doi: 10.3969/j.issn.1004-874X.2010.12.002

    CrossRef Google Scholar

    ZHU Wencong, LI Nana, AI Hong, et al. The characteristics of biodiversity of fish in Xisha & Zhongsha Islands [J]. Guangdong Agricultural Sciences, 2010, 37(12): 1-6. doi: 10.3969/j.issn.1004-874X.2010.12.002

    CrossRef Google Scholar

    [23] 李亚芳, 杜飞雁, 王亮根, 等. 南海中沙西沙海域海樽类群落结构特征研究[J]. 南方水产科学, 2016, 12(4):64-70 doi: 10.3969/j.issn.2095-0780.2016.04.008

    CrossRef Google Scholar

    LI Yafang, DU Feiyan, WANG Lianggen, et al. Community structure of Thaliacea in the Zhongsha and Xisha Islands, South China Sea [J]. South China Fisheries Science, 2016, 12(4): 64-70. doi: 10.3969/j.issn.2095-0780.2016.04.008

    CrossRef Google Scholar

    [24] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学, 2012, 42(8):1160-1172

    Google Scholar

    YU Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 42(8): 1160-1172.

    Google Scholar

    [25] Huang X X, Betzler C, Wu S G, et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea [J]. Marine and Petroleum Geology, 2020: 104349.

    Google Scholar

    [26] Li Y H, Huang H B, Grevemeyer I, et al. Crustal structure beneath the Zhongsha Block and the adjacent abyssal basins, South China Sea: New insights into rifting and initiation of seafloor spreading [J]. Gondwana Research, 2021, 99: 53-76. doi: 10.1016/j.gr.2021.06.015

    CrossRef Google Scholar

    [27] 赵斌, 高红芳, 张衡, 等. 基于深度域地震成像的中沙海槽盆地东北部结构构造研究[J]. 热带海洋学报, 2019, 38(2):95-102

    Google Scholar

    ZHAO Bin, GAO Hongfang, ZHANG Heng, et al. Structure study of the northeastern Zhongsha Trough Basin in the South China Sea based on prestack depth migration seismic imaging [J]. Journal of Tropical Oceanography, 2019, 38(2): 95-102.

    Google Scholar

    [28] 徐子英, 汪俊, 高红芳, 等. 中沙地块南部断裂发育特征及其成因机制[J]. 中国地质, 2020, 47(5):1438-1446

    Google Scholar

    XU Ziying, WANG Jun, GAO Hongfang, et al. The characteristics and formation mechanism of the faults in the southern part of the Zhongsha Bank, South China Sea [J]. Geology in China, 2020, 47(5): 1438-1446.

    Google Scholar

    [29] Quan Q, Xue H J. Layered model and insights into the vertical coupling of the South China Sea circulation in the upper and middle layers [J]. Ocean Modelling, 2018, 129: 75-92. doi: 10.1016/j.ocemod.2018.06.006

    CrossRef Google Scholar

    [30] Wang G H, Xie S P, Qu T D, et al. Deep South China Sea circulation [J]. Geophysical Research Letters, 2011, 38(5): L05601.

    Google Scholar

    [31] Wyrtki K. Physical Oceanography of the Southeast Asian Waters: Naga Report Volume 2: Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand[M]. ‎California: Scripps Institution of Oceanography, University of California, 1961.

    Google Scholar

    [32] Zhu Y H, Sun J C, Wang Y G, et al. Overview of the multi-layer circulation in the South China Sea [J]. Progress in Oceanography, 2019, 175: 171-182. doi: 10.1016/j.pocean.2019.04.001

    CrossRef Google Scholar

    [33] 黎雨晗, 黄海波, 丘学林, 等. 中沙海域的广角与多道地震探测[J]. 地球物理学报, 2020, 63(4):1523-1537 doi: 10.6038/cjg2020N0259

    CrossRef Google Scholar

    LI Yuhan, HUANG Haibo, QIU Xuelin, et al. Wide-angle and multi-channel seismic surveys in Zhongsha waters [J]. Chinese Journal of Geophysics, 2020, 63(4): 1523-1537. doi: 10.6038/cjg2020N0259

    CrossRef Google Scholar

    [34] 黄金森. 中沙环礁特征[J]. 海洋地质与第四纪地质, 1987, 7(2):23-26

    Google Scholar

    HUANG Jinsen. Features of the Zhongsha Atoll in the South China Sea [J]. Marine Geology & Quaternary Geology, 1987, 7(2): 23-26.

    Google Scholar

    [35] Wentworth C K. A scale of grade and class terms for clastic sediments [J]. The Journal of Geology, 1922, 30(5): 377-392. doi: 10.1086/622910

    CrossRef Google Scholar

    [36] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand [J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211

    CrossRef Google Scholar

    [37] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63-85.

    Google Scholar

    [38] Gao S, Collins M B, Lanckneus J, et al. Grain size trends associated with net sediment transport patterns: An example from the Belgian continental shelf [J]. Marine Geology, 1994, 121(3-4): 171-185. doi: 10.1016/0025-3227(94)90029-9

    CrossRef Google Scholar

    [39] Gao S. A FORTRAN program for grain-size trend analysis to define net sediment transport pathways [J]. Computers & Geosciences, 1996, 22(4): 449-452.

    Google Scholar

    [40] Gao S, Collins M. The use of grain size trends in marine sediment dynamics: A review [J]. Chinese Journal of Oceanology and Limnology, 2001, 19(3): 265-271. doi: 10.1007/BF02850664

    CrossRef Google Scholar

    [41] Gao S, Collins M, McLaren P, et al. A critique of the "McLaren Method" for defining sediment transport paths; discussion and reply [J]. Journal of Sedimentary Research, 1991, 61(1): 143-147. doi: 10.1306/D42676A9-2B26-11D7-8648000102C1865D

    CrossRef Google Scholar

    [42] 姜在兴. 沉积学[M]. 2版. 北京: 石油工业出版社, 2010: 52

    Google Scholar

    JIANG Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010: 52.

    Google Scholar

    [43] 李玉中, 陈沈良. 系统聚类分析在现代沉积环境划分中的应用: 以崎岖列岛海区为例[J]. 沉积学报, 2003, 21(3): 487-494.

    Google Scholar

    LI Yuzhong, CHEN Shenliang. Application of system cluster analysis to classification of modern sedimentary environment: a case study in Qiqu Archipelago Area[J]. Acta Sedimentologica Sinica, 2003, 21(3): 487-494.

    Google Scholar

    [44] 陈翰, 陈忠, 颜文, 等. 汕头近岸海域表层沉积物粒度特征及其输运趋势[J]. 沉积学报, 2014, 32(2):314-324

    Google Scholar

    CHEN Han, CHEN Zhong, YAN Wen, et al. Grain Size Characteristics of Surface Sediments and Their Transport Patterns over the Coastal Waters of Shantou City, Guangdong Province [J]. Acta Sedimentologica Sinica, 2014, 32(2): 314-324.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1992) PDF downloads(43) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint