2022 Vol. 42, No. 1
Article Contents

LUO Shunkai, ZHOU Huaiyang, ZHAO Guoqing, YUAN Wei. Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 135-145. doi: 10.16562/j.cnki.0256-1492.2021070502
Citation: LUO Shunkai, ZHOU Huaiyang, ZHAO Guoqing, YUAN Wei. Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 135-145. doi: 10.16562/j.cnki.0256-1492.2021070502

Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods

More Information
  • Precise dating of deep-sea Fe-Mn crust is crucial to the research of paleoceanographic changes. In this paper, dating methods of 10Be/9Be, Co empirical formula, 230Thex/232Th and paleomagnetic stratigraphy are comparatively used for systematical chronological studies of a Fe-Mn crust sample collected from the Gagua Ridge. Different growth rate or different age figures are observed as different dating methods are adopted due to large inputs of terrigenous materials. Co content is diluted by the excessive amounts of 232Th brought in by the terrigenous inputs, and the Co flux in certain layers and initial 230Thex/232Th flux at the surface layer are both greatly fluctuated, which will render greatly influence onto the dating results of the two methods. Although the 10Be/9Be initial flux is also influenced by terrigenous inputs, it remains relatively stable. Therefore, 10Be/9Be can be regarded as the most precise dating method in the case. Paleomagnetic stratigraphy dating results may provide several age controlling points after referring to other dating results. Finally, the initial growth age of the Fe-Mn crust is confirmed as 7.09 Ma. For more precise age figure, further studies are required on the occurrence of nuclides in the Fe-Mn crust.

  • 加载中
  • [1] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    CrossRef Google Scholar

    [2] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 13: 273-291.

    Google Scholar

    [3] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177

    CrossRef Google Scholar

    [4] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    CrossRef Google Scholar

    [5] Christensen J N, Halliday A N, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts [J]. Science, 1997, 277(5328): 913-918. doi: 10.1126/science.277.5328.913

    CrossRef Google Scholar

    [6] Burton K W, Ling H F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic [J]. Nature, 1997, 386(6623): 382-385. doi: 10.1038/386382a0

    CrossRef Google Scholar

    [7] Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 345-361. doi: 10.1016/j.jpgl.2004.12.009

    CrossRef Google Scholar

    [8] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016

    CrossRef Google Scholar

    [9] Klemm V, Frank M, Levasseur S, et al. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 175-183. doi: 10.1016/j.jpgl.2008.06.028

    CrossRef Google Scholar

    [10] 王洋, 方念乔. 80Ma以来海水Os同位素组成曲线的精细特征: 中、西太平洋多金属结壳的记录[J]. 海洋科学, 2020, 44(9):21-28

    Google Scholar

    WANG Yang, FANG Nianqiao. Precise characteristics of Os isotopic composition of seawater since 80 Ma: recorded in polymetallic crusts from CW Pacific [J]. Marine Sciences, 2020, 44(9): 21-28.

    Google Scholar

    [11] Cowen J P, Decarlo E H, Mcgee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115(3-4): 289-306. doi: 10.1016/0025-3227(93)90057-3

    CrossRef Google Scholar

    [12] 苏新, 马维林, 程振波. 中太平洋海山区富钴结壳的钙质超微化石地层学研究[J]. 地球科学——中国地质大学学报, 2004, 29(2):141-147 doi: 10.3321/j.issn:1000-2383.2004.02.003

    CrossRef Google Scholar

    SU Xin, MA Weilin, CHENG Zhenbo. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 141-147. doi: 10.3321/j.issn:1000-2383.2004.02.003

    CrossRef Google Scholar

    [13] 张海生, 韩正兵, 雷吉江, 等. 太平洋海山富钴结壳钙质超微化石生物地层学及生长过程[J]. 地球科学——中国地质大学学报, 2014, 39(7):775-783 doi: 10.3799/dqkx.2014.073

    CrossRef Google Scholar

    ZHANG Haisheng, HAN Zhengbing, LEI Jijiang, et al. Calcareous nannofossil biostratigraphy and growth periods of Co-rich crusts from Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(7): 775-783. doi: 10.3799/dqkx.2014.073

    CrossRef Google Scholar

    [14] 任向文, Pulyaeva I, 吕华华, 等. 麦哲伦海山群MK海山富钴结壳钙质超微化石生物地层学研究[J]. 地学前缘, 2017, 24(1):276-296

    Google Scholar

    REN Xiangwen, Pulyaeva I, LÜ Huahua, et al. Calcareous nannofossil biostratigraphy of a Co-rich ferromanganese crust from seamount MK of Magellan Seamount Cluster [J]. Earth Science Frontiers, 2017, 24(1): 276-296.

    Google Scholar

    [15] Han X Q, Jin X L, Yang S F, et al. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin [J]. Earth and Planetary Science Letters, 2003, 211(1-2): 143-157. doi: 10.1016/S0012-821X(03)00169-9

    CrossRef Google Scholar

    [16] Josso P, van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651

    CrossRef Google Scholar

    [17] Ku T L, Kusakabe M, Nelson D E, et al. Constancy of oceanic deposition of 10Be as recorded in manganese crusts [J]. Nature, 1982, 299(5880): 240-242. doi: 10.1038/299240a0

    CrossRef Google Scholar

    [18] Von Blanckenburg F, O'Nions R K. Response of beryllium and radiogenic isotope ratios in Northern Atlantic Deep Water to the onset of northern hemisphere glaciation [J]. Earth and Planetary Science Letters, 1999, 167(3-4): 175-182. doi: 10.1016/S0012-821X(99)00028-X

    CrossRef Google Scholar

    [19] Somayajulu B L K. Growth rates of oceanic manganese nodules: implications to their genesis, palaeo-earth environment and resource potential [J]. Current Science, 2000, 78(3): 300-308.

    Google Scholar

    [20] 方志浩, 屠霄霞, 乔志国, 等. 铁锰结壳年代学方法及其应用[J]. 海洋科学, 2019, 43(9):104-113 doi: 10.11759/hykx20190130003

    CrossRef Google Scholar

    FANG Zhihao, TU Xiaoxia, QIAO Zhiguo, et al. Review and application of dating methods of ferromanganese crusts [J]. Marine Sciences, 2019, 43(9): 104-113. doi: 10.11759/hykx20190130003

    CrossRef Google Scholar

    [21] Crecelius E A, Carpenter R, Merrill R T. Magnetism and magnetic reversals in ferromanganese nodules [J]. Earth and Planetary Science Letters, 1973, 17(2): 391-396. doi: 10.1016/0012-821X(73)90206-9

    CrossRef Google Scholar

    [22] Oda H, Usui A, Miyagi I, et al. Ultrafine-scale magnetostratigraphy of marine ferromanganese crust [J]. Geology, 2011, 39(3): 227-230. doi: 10.1130/G31610.1

    CrossRef Google Scholar

    [23] Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific-Testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24. doi: 10.1016/j.oregeorev.2016.07.018

    CrossRef Google Scholar

    [24] Yuan W, Zhou H Y, Zhao X X, et al. Magnetic stratigraphic dating of marine hydrogenetic ferromanganese crusts [J]. Scientific Reports, 2017, 7(1): 16748. doi: 10.1038/s41598-017-17077-8

    CrossRef Google Scholar

    [25] Yi L, Medina-Elizalde M, Kletetschka G, et al. The potential of marine ferromanganese nodules from eastern pacific as recorders of earth's magnetic field changes during the past 4.7 Myr: a geochronological study by magnetic scanning and authigenic 10Be/9Be dating [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(7): e2019JB018639.

    Google Scholar

    [26] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5

    CrossRef Google Scholar

    [27] Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130. doi: 10.1016/j.oregeorev.2018.02.026

    CrossRef Google Scholar

    [28] Du Y J, Zhou W J, Xian F, et al. 10Be signature of the Matuyama-Brunhes transition from the Heqing paleolake basin [J]. Quaternary Science Reviews, 2018, 199: 41-48. doi: 10.1016/j.quascirev.2018.09.020

    CrossRef Google Scholar

    [29] Tu X X, Zhou H Y, Wang C H, et al. Basin-scale seawater lead isotopic character and its geological evolution indicated by Fe-Mn deposits in the SCS [J]. Marine Georesources & Geotechnology, 2020, 38(7): 876-886.

    Google Scholar

    [30] Cheng H, Edwards R L, Shen C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry [J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91. doi: 10.1016/j.jpgl.2013.04.006

    CrossRef Google Scholar

    [31] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    CrossRef Google Scholar

    [32] Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the Late Quaternary [J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995.

    Google Scholar

    [33] Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input [J]. Reviews of Geophysics, 2002, 40(1): 1001. doi: 10.1029/2000RG000094

    CrossRef Google Scholar

    [34] Von Blanckenburg F, Bouchez J. River fluxes to the sea from the ocean's 10Be/9Be ratio [J]. Earth and Planetary Science Letters, 2014, 387: 34-43. doi: 10.1016/j.jpgl.2013.11.004

    CrossRef Google Scholar

    [35] Beer J, Muscheler R, Wagner G, et al. Cosmogenic nuclides during Isotope Stages 2 and 3 [J]. Quaternary Science Reviews, 2002, 21(10): 1129-1139. doi: 10.1016/S0277-3791(01)00135-4

    CrossRef Google Scholar

    [36] Frank M, Porcelli D, Andersson P, et al. The dissolved Beryllium isotope composition of the Arctic Ocean [J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6114-6133. doi: 10.1016/j.gca.2009.07.010

    CrossRef Google Scholar

    [37] Suganuma Y, Yokoyama Y, Yamazaki T, et al. 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary [J]. Earth and Planetary Science Letters, 2010, 296(3-4): 443-450. doi: 10.1016/j.jpgl.2010.05.031

    CrossRef Google Scholar

    [38] Simon Q, Thouveny N, Bourlès D L, et al. Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition [J]. Earth and Planetary Science Letters, 2018, 489: 191-202. doi: 10.1016/j.jpgl.2018.02.036

    CrossRef Google Scholar

    [39] Von Blanckenburg F, O’Nions R K, Belshaw N S, et al. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts [J]. Earth and Planetary Science Letters, 1996, 141(1-4): 213-226. doi: 10.1016/0012-821X(96)00059-3

    CrossRef Google Scholar

    [40] Cui L F, Hu Y, Dong K J, et al. 10Be/9Be constrain of varying weathering rate since 5 Ma: evidence from a Co-rich ferromanganese crust in the western Pacific [J]. Science Bulletin, 2021, 66(7): 664-666. doi: 10.1016/j.scib.2020.12.022

    CrossRef Google Scholar

    [41] Zhong Y, Chen Z, Hein J R, et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene [J]. Quaternary Science Reviews, 2020, 229: 106106. doi: 10.1016/j.quascirev.2019.106106

    CrossRef Google Scholar

    [42] Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163. doi: 10.1016/j.margeo.2018.12.006

    CrossRef Google Scholar

    [43] Puteanus D, Halbach P. Correlation of Co concentration and growth rate: a method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3

    CrossRef Google Scholar

    [44] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3

    CrossRef Google Scholar

    [45] 周怀阳. 深海海底铁锰结核的秘密[J]. 自然杂志, 2015, 37(6):397-404

    Google Scholar

    ZHOU Huaiyang. Metallogenetic mystery of deep sea ferromanganese nodules [J]. Chinese Journal of Nature, 2015, 37(6): 397-404.

    Google Scholar

    [46] Burton K W, Lee D C, Christensen J N, et al. Actual timing of neodymium isotopic variations recorded by Fe-Mn crusts in the western North Atlantic [J]. Earth and Planetary Science Letters, 1999, 171(1): 149-156. doi: 10.1016/S0012-821X(99)00138-7

    CrossRef Google Scholar

    [47] Neff U, Bollhöfer A, Frank N, et al. Explaining discrepant depth profiles of 234U/238U and 230Thexc in Mn-crusts [J]. Geochimica et Cosmochimica Acta, 1999, 63(15): 2211-2218. doi: 10.1016/S0016-7037(99)00135-0

    CrossRef Google Scholar

    [48] Henderson G M, Burton K W. Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts [J]. Earth and Planetary Science Letters, 1999, 170(3): 169-179. doi: 10.1016/S0012-821X(99)00104-1

    CrossRef Google Scholar

    [49] Hayes C T. Marine thorium and protactinium distributions: Tools for past and present chemical flux[D]. Doctor Dissertation of Columbia University, 2013.

    Google Scholar

    [50] Claude C, Suhr G, Hofmann A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka [J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4845-4854. doi: 10.1016/j.gca.2005.05.016

    CrossRef Google Scholar

    [51] Huh C A, Ku T L. Distribution of thorium 232 in manganese nodules and crusts: Paleoceanographic implications [J]. Paleoceanography, 1990, 5(2): 187-195. doi: 10.1029/PA005i002p00187

    CrossRef Google Scholar

    [52] Hsieh Y T, Henderson G M, Thomas A L. Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 280-290. doi: 10.1016/j.jpgl.2011.10.022

    CrossRef Google Scholar

    [53] O'Nions R K, Frank M, Von Blanckenburg F, et al. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans [J]. Earth and Planetary Science Letters, 1998, 155(1-2): 15-28. doi: 10.1016/S0012-821X(97)00207-0

    CrossRef Google Scholar

    [54] Guan Y, Sun X M, Ren Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea [J]. Ore Geology Reviews, 2017, 89: 206-227. doi: 10.1016/j.oregeorev.2017.06.020

    CrossRef Google Scholar

    [55] Yuan W, Zhou H Y, Yang Z Y, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferromanganese crusts [J]. Geology, 2020, 48(3): 1-1.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(2920) PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint