2022 Vol. 42, No. 2
Article Contents

ZHANG Yunshan, JIA Yonggang, WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 200-213. doi: 10.16562/j.cnki.0256-1492.2021052002
Citation: ZHANG Yunshan, JIA Yonggang, WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 200-213. doi: 10.16562/j.cnki.0256-1492.2021052002

A review and prospect of in-situ observation equipment for cold seep

More Information
  • Marine cold seep, mainly formed by the seepage of natural gas hydrate, is a fluid composed mainly of water, hydrocarbons, hydrogen sulfide and or carbon dioxide. It is not only a sign of the existence of seabed gas hydrate, but also a substance closely related to greenhouse effect, marine ecological environment, cold seep biological community and other issues. The measurement of the fluid leakage flux and chemical composition of cold seep is of great significance for understanding the issues mentioned above. Compared with laboratory chemical analysis and numerical simulation, in-situ observation can ensure the reliability and authenticity of data. As a main mean, in-situ observation equipment of cold seep has developed rapidly in the past two decades. In this paper, according to its objectives and principles, the in-situ observation equipment of the cold seep is divided into three types: the in-situ observation equipment for the leakage gas flux of the cold seep, the in-situ observation equipment for the leakage liquid flux of the cold seep and the in-situ observation equipment for the chemical composition of the seepage fluid of the cold seep. The development of in-situ observation equipment for cold seep at home and abroad is summarized in this paper from the aspects of design significance and working principle. And the advantages, limitations and application range of the equipment are discussed. In the end, the future development direction of the in-situ observation equipment for the cold seep is prospected.

  • 加载中
  • [1] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013

    CrossRef Google Scholar

    CHEN Zhong, YANG Huaping, HUANG Qiyu, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013

    CrossRef Google Scholar

    [2] Talukder A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting [J]. Terra Nova, 2012, 24(4): 255-272. doi: 10.1111/j.1365-3121.2012.01066.x

    CrossRef Google Scholar

    [3] Cao L, Lian C, Zhang X, et al. In situ detection of the fine scale heterogeneity of active cold seep environment of the Formosa Ridge, the South China Sea [J]. Journal of Marine Systems, 2021, 218: 103530. doi: 10.1016/j.jmarsys.2021.103530

    CrossRef Google Scholar

    [4] Ho S, Cartwright J A, Imbert P. Vertical evolution of fluid venting structures in relation to gas flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola [J]. Marine Geology, 2012, 322-334: 40-55.

    Google Scholar

    [5] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    CrossRef Google Scholar

    [6] Suess E. Marine cold seeps: background and recent advances[M]//Wilkes H. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 2018: 1-21.

    Google Scholar

    [7] 席世川, 张鑫, 王冰, 等. 海底冷泉标志与主要冷泉区的分布和比较[J]. 海洋地质前沿, 2017, 33(2):7-18

    Google Scholar

    XI Shichuan, ZHANG Xin, WANG Bing, et al. The indicators of seabed cold seep and comparison among main distribution areas [J]. Marine Geology Frontiers, 2017, 33(2): 7-18.

    Google Scholar

    [8] Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003

    CrossRef Google Scholar

    [9] Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001

    CrossRef Google Scholar

    [10] Leifer I, Boles J, Luyendyk A B. Measurement of oil and gas emissions from a marine seep[C]//New Energy Development and Technology (EDT-009) Working Paper January 2007. California: University of California Energy Institute, 2007: 1-22.

    Google Scholar

    [11] Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    CrossRef Google Scholar

    [12] 阴家润, 王薇薇. 深海洋底热泉生态系和冷泉生物研究综述[J]. 地质科技情报, 1995, 14(2):31-36

    Google Scholar

    YIN Jiarun, WANG Weiwei. Hydrothermal vent ecosystem and cold seep community of deep sea [J]. Geological Science and Technology Information, 1995, 14(2): 31-36.

    Google Scholar

    [13] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965

    CrossRef Google Scholar

    [14] 耿明会, 关永贤, 宋海斌, 等. 南海北部天然气渗漏系统地球物理初探[J]. 海洋学研究, 2014, 32(2):46-52

    Google Scholar

    GENG Minghui, GUAN Yongxian, SONG Haibin, et al. Preliminary geophysical studies of the natural gas seepage systems in the northern South China Sea [J]. Journal of Marine Sciences, 2014, 32(2): 46-52.

    Google Scholar

    [15] 冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056, 1046

    Google Scholar

    FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056, 1046.

    Google Scholar

    [16] 程俊, 王淑红, 黄怡, 等. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征[J]. 海洋科学, 2019, 43(5):110-122 doi: 10.11759/hykx20180426001

    CrossRef Google Scholar

    CHENG Jun, WANG Shuhong, HUANG Yi, et al. Geochemical response characteristics of methane seepage activities in gas hydrate zones [J]. Marine Sciences, 2019, 43(5): 110-122. doi: 10.11759/hykx20180426001

    CrossRef Google Scholar

    [17] 王旭东, 黄慧文, 孙跃东, 等. 北印度洋海底冷泉流体活动研究进展[J]. 热带海洋学报, 2017, 36(6):82-89

    Google Scholar

    WANG Xudong, HUANG Huiwen, SUN Yuedong, et al. Recent progress on submarine cold seep activity of the northern Indian Ocean [J]. Journal of Tropical Oceanography, 2017, 36(6): 82-89.

    Google Scholar

    [18] 杨艺萍, 唐灵刚, 向荣, 等. 东沙西南海域表层沉积物底栖有孔虫群落特征及其对冷泉活动的指示意义[J]. 微体古生物学报, 2017, 34(3):237-246

    Google Scholar

    YANG Yiping, TANG Linggang, XIANG Rong, et al. Benthic foraminiferal assemblage and its implications for cold seepage in the southwestern area off dongsha islands, South China sea, China [J]. Acta Micropalaeontologica Sinica, 2017, 34(3): 237-246.

    Google Scholar

    [19] 刘浩东. 南海北部陆坡冷泉和非冷泉沉积物古菌多样性研究[D]. 中国地质大学(北京), 2013.

    Google Scholar

    LIU Haodong. Study on the archaeal diversity in sediments of cold seeps and none cold seeps from northern slope of South China Sea[D]. Master Dissertation of China University of Geosciences (Beijing), 2013.

    Google Scholar

    [20] Lu R, Gao Z M, Li W L, et al. Asgard archaea in the haima cold seep: Spatial distribution and genomic insights [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 170: 103489. doi: 10.1016/j.dsr.2021.103489

    CrossRef Google Scholar

    [21] 张福凯, 徐龙君. 甲烷对全球气候变暖的影响及减排措施[J]. 矿业安全与环保, 2004, 31(5):6-9, 38 doi: 10.3969/j.issn.1008-4495.2004.05.003

    CrossRef Google Scholar

    ZHANG Fukai, XU Longjun. Effect of methane on global warming and mitigating measures [J]. Mining Safety and Environmental Protection, 2004, 31(5): 6-9, 38. doi: 10.3969/j.issn.1008-4495.2004.05.003

    CrossRef Google Scholar

    [22] 陈汉宗, 周蒂. 天然气水合物与全球变化研究[J]. 地球科学进展, 1997, 12(1):38-43

    Google Scholar

    CHEN Hanzong, ZHOU Di. The study of gas hydrates and its relation with global changes [J]. Advances in Earth Science, 1997, 12(1): 38-43.

    Google Scholar

    [23] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450 doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    CrossRef Google Scholar

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    CrossRef Google Scholar

    [24] Judd A G. The global importance and context of methane escape from the seabed [J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z

    CrossRef Google Scholar

    [25] Wu J G, Wu T T, Deng X G, et al. Acoustic characteristics of cold-seep methane bubble behavior in the water column and its potential environmental impact [J]. Acta Oceanologica Sinica, 2020, 39(5): 133-144. doi: 10.1007/s13131-019-1489-0

    CrossRef Google Scholar

    [26] Washburn L, Johnson C, Gotschalk C C, et al. A gas-capture buoy for measuring bubbling gas flux in oceans and lakes [J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(8): 1411-1420. doi: 10.1175/1520-0426(2001)018<1411:AGCBFM>2.0.CO;2

    CrossRef Google Scholar

    [27] Leifer I, Boles J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales [J]. Journal of Geophysical Research: Oceans, 2005, 110(C1): C01006.

    Google Scholar

    [28] Di P F, Chen Q H, Chen D F. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study [J]. Journal of Tropical Oceanography, 2012, 31(5): 83-87.

    Google Scholar

    [29] Padilla A M, Loranger S, Kinnaman F S, et al. Modern assessment of natural hydrocarbon gas flux at the coal oil point seep field, Santa Barbara, California [J]. Journal of Geophysical Research: Oceans, 2019, 124(4): 2472-2484. doi: 10.1029/2018JC014573

    CrossRef Google Scholar

    [30] Greinert J, Nützel B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps [J]. Geo-Marine Letters, 2004, 24(2): 75-85. doi: 10.1007/s00367-003-0165-7

    CrossRef Google Scholar

    [31] Greinert J. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant [J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07048.

    Google Scholar

    [32] Lemon D D, Gower J F R, Clarke M R. The acoustic water column profiler: a tool for long-term monitoring of zooplankton populations[C]//MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu, HI, USA: IEEE, 2001: 1904-1909.

    Google Scholar

    [33] Salmi M S, Johnson H P, Leifer I, et al. Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin [J]. Geosphere, 2011, 7(6): 1273-1283. doi: 10.1130/GES00648.1

    CrossRef Google Scholar

    [34] Leifer I, Chernykh D, Shakhova N, et al. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea [J]. The Cryosphere, 2017, 11(3): 1333-1350. doi: 10.5194/tc-11-1333-2017

    CrossRef Google Scholar

    [35] 王冰, 宋永东, 杜增丰, 等. 基于“发现”号ROV的近海底综合声学调查系统及其在台西南冷泉调查中的应用[J]. 海洋与湖沼, 2020, 51(4):889-898 doi: 10.11693/hyhz20200100026

    CrossRef Google Scholar

    WANG Bing, SONG Yongdong, DU Zengfeng, et al. An integrated underwater acoustic survey system and its application in the investigation of the cold seep site off southwestern taiwan [J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 889-898. doi: 10.11693/hyhz20200100026

    CrossRef Google Scholar

    [36] Nikolovska A, Waldmann C. Passive acoustic quantification of underwater gas seepage[C]//OCEANS 2006. Boston, MA, USA: IEEE, 2006: 1-6.

    Google Scholar

    [37] Wiggins S M, Leifer I, Linke P, et al. Long-term acoustic monitoring at North Sea well site 22/4b [J]. Marine and Petroleum Geology, 2015, 68: 776-788. doi: 10.1016/j.marpetgeo.2015.02.011

    CrossRef Google Scholar

    [38] 龙建军, 黄为, 邹大鹏, 等. 海底天然气渗漏流量声学测量方法及初步实验研究[J]. 热带海洋学报, 2012, 31(5):100-105 doi: 10.3969/j.issn.1009-5470.2012.05.015

    CrossRef Google Scholar

    LONG Jianjun, HUANG Wei, ZOU Dapeng, et al. Method of measuring bubble flow from cool seeps on seafloor using acoustic transmission and preliminary experiments [J]. Journal of Tropical Oceanography, 2012, 31(5): 100-105. doi: 10.3969/j.issn.1009-5470.2012.05.015

    CrossRef Google Scholar

    [39] 胡柳. 冷泉渗漏声波测量装置主体研制与气泡-水声学特性的实验研究[D]. 广东工业大学, 2014.

    Google Scholar

    HU Liu. Development of seepage acoustic measuring device and experimental study on bubble-water acoustic properties[D]. Master Dissertation of Guangdong University of Technology, 2014.

    Google Scholar

    [40] 张浩. 海底冷泉渗漏气体流量声波测量仪的研究与开发[D]. 广东工业大学, 2015.

    Google Scholar

    ZHANG Hao. Research and experimental study on acoustic measuring instrument of gas seeping on seafloor[D]. Master Dissertation of Guangdong University of Technology, 2015.

    Google Scholar

    [41] Leifer I, Leeuw G D, Cohen L H. Optical measurement of bubbles: system design and application [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(9): 1317-1332. doi: 10.1175/1520-0426(2003)020<1317:OMOBSD>2.0.CO;2

    CrossRef Google Scholar

    [42] Leifer I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field [J]. Journal of Geophysical Research: Oceans, 2010, 115(C11): C11014. doi: 10.1029/2009JC005844

    CrossRef Google Scholar

    [43] Leifer I. Seabed bubble flux estimation by calibrated video survey for a large blowout seep in the North Sea [J]. Marine and Petroleum Geology, 2015, 68: 743-752. doi: 10.1016/j.marpetgeo.2015.08.032

    CrossRef Google Scholar

    [44] Wang B B, Socolofsky S A, Breier J A, et al. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging [J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2203-2230. doi: 10.1002/2015JC011452

    CrossRef Google Scholar

    [45] Di P F, Feng D, Tao J, et al. Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea [J]. Minerals, 2020, 10(3): 216. doi: 10.3390/min10030216

    CrossRef Google Scholar

    [46] Cable J E, Burnett W C, Chanton J P, et al. Field evaluation of seepage meters in the coastal marine environment [J]. Estuarine, Coastal and Shelf Science, 1997, 45(3): 367-375. doi: 10.1006/ecss.1996.0191

    CrossRef Google Scholar

    [47] Lee D R. A device for measuring seepage flux in lakes and estuaries [J]. Limnology and Oceanography, 1977, 22(1): 140-147. doi: 10.4319/lo.1977.22.1.0140

    CrossRef Google Scholar

    [48] Linke P, Suess E, Torres M, et al. In situ measurement of fluid flow from cold seeps at active continental margins [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(4): 721-739. doi: 10.1016/0967-0637(94)90051-5

    CrossRef Google Scholar

    [49] Labarbera M, Vogel S. An inexpensive thermistor flowmeter for aquatic biology [J]. Limnology and Oceanography, 1976, 21(5): 750-756. doi: 10.4319/lo.1976.21.5.0750

    CrossRef Google Scholar

    [50] Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge [J]. Global Biogeochemical Cycles, 2006, 20(2): GB2019.

    Google Scholar

    [51] Tryon M, Brown K, Dorman L, et al. A new benthic aqueous flux meter for very low to moderate discharge rates [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(9): 2121-2146. doi: 10.1016/S0967-0637(01)00002-4

    CrossRef Google Scholar

    [52] Jannasch H W, Wheat C G, Plant J N, et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications [J]. Limnology and Oceanography: Methods, 2004, 2(4): 102-113. doi: 10.4319/lom.2004.2.102

    CrossRef Google Scholar

    [53] Kastner M, Jannasch H, Weinstein Y, et al. A new sampler for monitoring fluid and chemical fluxes in hydrologically active submarine environments[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings. Providence, RI, USA: IEEE, 2000: 109-112.

    Google Scholar

    [54] Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 95-105. doi: 10.1016/j.jpgl.2008.03.024

    CrossRef Google Scholar

    [55] Labonte A L, Brown K M, Tryon M D. Monitoring periodic and episodic flow events at Monterey Bay seeps using a new optical flow meter [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B2): B02105.

    Google Scholar

    [56] 田国辉, 陈亚杰, 冯清茂. 拉曼光谱的发展及应用[J]. 化学工程师, 2008, 22(1):34-36 doi: 10.3969/j.issn.1002-1124.2008.01.013

    CrossRef Google Scholar

    TIAN Guohui, CHEN Yajie, FENG Qingmao. Development and application of Raman technology [J]. Chemical Engineer, 2008, 22(1): 34-36. doi: 10.3969/j.issn.1002-1124.2008.01.013

    CrossRef Google Scholar

    [57] 伍林, 欧阳兆辉, 曹淑超, 等. 拉曼光谱技术的应用及研究进展[J]. 光散射学报, 2005, 17(2):180-186 doi: 10.3969/j.issn.1004-5929.2005.02.013

    CrossRef Google Scholar

    WU Lin, OUYANG Zhaohui, CAO Shucao, et al. Research development and application of Raman scattering technology [J]. Chinese Journal of Light Scattering, 2005, 17(2): 180-186. doi: 10.3969/j.issn.1004-5929.2005.02.013

    CrossRef Google Scholar

    [58] 杜增丰. 基于 DOCARS 和 LCOF-Raman 的酸根离子探测和沉积物孔隙水的光谱分析[D]. 中国海洋大学, 2015.

    Google Scholar

    DU Zengfeng. Detection of acid radical ions with DOCARS and LCOF-Raman system and spectral analysis of sediment pore water[D]. Doctor Dissertation of Ocean University of China, 2015.

    Google Scholar

    [59] 张鑫. 深海环境及深海沉积物拉曼光谱原位定量探测技术研究[D]. 中国海洋大学, 2009.

    Google Scholar

    ZHANG Xin. Quantitative applications of Raman technique for deep-sea environment and sediment detection new technique for deep-sea sediment pore water and methane hydrates in situ detection[D]. Doctor Dissertation of Ocean University of China, 2009.

    Google Scholar

    [60] 杜增丰, 张鑫, 郑荣儿. 拉曼光谱技术在深海原位探测中的研究进展[J]. 大气与环境光学学报, 2020, 15(1):2-12

    Google Scholar

    DU Zengfeng, ZHANG Xin, ZHENG Ronger. Research progress and prospect of laser Raman spectroscopy for in-situ detection in deep ocean [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 2-12.

    Google Scholar

    [61] 赵永柱. 光纤内共振拉曼光谱法探测水中痕量生物分子[D]. 吉林大学, 2004.

    Google Scholar

    ZHAO Yongzhu. Trace analysis of biological molecules in water by means of the resonance raman spectra in liquid-core optical fiber[D]. Master Dissertation of Jilin University, 2004.

    Google Scholar

    [62] Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123: 1-12. doi: 10.1016/j.dsr.2017.02.005

    CrossRef Google Scholar

    [63] 申正伟. 深海溶解甲烷原位长期探测技术研发及应用研究[D]. 中国地质大学(北京), 2018.

    Google Scholar

    SHEN Zhengwei. Research and development of in-situ long-term detection technology for deep-sea dissolved methane and its application[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2018.

    Google Scholar

    [64] 申正伟, 孙春岩, 贺会策, 等. 深海原位溶解甲烷传感器(METS)的原理及应用研究[J]. 海洋技术学报, 2015, 34(5):19-25

    Google Scholar

    SHEN Zhengwei, SUN Chunyan, HE Huice, et al. The Principle and Applied Research of In-situ METS for Dissolved Methane Measurement in Deep Sea [J]. Journal of Ocean Technology, 2015, 34(5): 19-25.

    Google Scholar

    [65] 于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037

    Google Scholar

    YU Xinsheng, LI Lina, HU Yali, et al. The development of in situ sensors for dissolved methane measurement in the sea [J]. Advances in Earth Sciences, 2011, 26(10): 1030-1037.

    Google Scholar

    [66] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    Google Scholar

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    Google Scholar

    [67] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128

    CrossRef Google Scholar

    [68] 邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    Google Scholar

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites [J]. Progress in Geophysics, 2008, 23(5): 1592-1602.

    Google Scholar

    [69] Beranzoli L, De Santis A, Etiope A G, et al. GEOSTAR: a geophysical and oceanographic station for abyssal research [J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 175-183. doi: 10.1016/S0031-9201(98)00094-6

    CrossRef Google Scholar

    [70] Marinaro G, Etiope G, Gasparoni F, et al. GMM—a gas monitoring module for long-term detection of methane leakage from the seafloor [J]. Environmental Geology, 2004, 46(8): 1053-1058. doi: 10.1007/s00254-004-1092-2

    CrossRef Google Scholar

    [71] Pfannkuche O, Linke P. GEOMAR landers as long-term deep-sea observatories: applications and developments of lander technology in operational oceanography [J]. Sea Technology, 2003, 44(9): 50-55.

    Google Scholar

    [72] 赵广涛, 于新生, 李欣, 等. Benvir: 一个深海海底边界层原位监测装置[J]. 高技术通讯, 2015, 25(1):54-60 doi: 10.3772/j.issn.1002-0470.2015.01.008

    CrossRef Google Scholar

    ZHAO Guangtao, YU Xinsheng, LI Xin, et al. Benvir: A in situ Deep-sea observation system for Benthic environmental monitoring [J]. Chinese High Technology Letters, 2015, 25(1): 54-60. doi: 10.3772/j.issn.1002-0470.2015.01.008

    CrossRef Google Scholar

    [73] 徐翠玲. 南海冷泉区甲烷渗漏过程的原位观测研究[D]. 中国海洋大学, 2013.

    Google Scholar

    XU Cuiling. In situ observation of methane seepage in the South China Sea[D]. Master Dissertation of Ocean University of China, 2013.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Article Metrics

Article views(2035) PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint