2022 Vol. 42, No. 1
Article Contents

YU Zhe, DENG Yinan, CHEN Chen, CAO Jun, FANG Yunxin, JIANG Xuexiao, HUANG Yi. Trace elements geochemistry of marine sediments and its implications for gas hydrate exploration[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 111-122. doi: 10.16562/j.cnki.0256-1492.2021040101
Citation: YU Zhe, DENG Yinan, CHEN Chen, CAO Jun, FANG Yunxin, JIANG Xuexiao, HUANG Yi. Trace elements geochemistry of marine sediments and its implications for gas hydrate exploration[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 111-122. doi: 10.16562/j.cnki.0256-1492.2021040101

Trace elements geochemistry of marine sediments and its implications for gas hydrate exploration

More Information
  • Gas hydrate is closely related to some major scientific issues such as energy supply and global environmental changes, and has become one of the hotspots of the world. Previous studies of the geochemical characteristics of methane seepage areas were mainly focused on shallow sediments, while the geochemical characteristics of deep sediments are ignored to certain extent. In order to explore the relationship between gas hydrate and the characteristics of trace elements in deeper sediments, 4 holes have been drilled and sampled at the Shenhu area of the South China Sea. Main, trace elements and organic carbon geochemical characteristics of the samples are analyzed and the oxidation-reduction state and their correlation with Mo and TOC discussed. The results suggest that the major elements in the sediments mainly come from terrigenous clastic material input, without obvious relationship with the process of gas hydrate enrichment. In the area rich in natural gas hydrate, Ba and Mo elements are always highly enriched showing obvious "Ba peaks" and "Mo peaks" owing to the sulfidation environment caused by the decomposition of natural gas hydrates. Therefore, the enrichment of Ba and Mo in the sediments can be used as important geochemical indicators to possible presence of gas hydrate accumulation.

  • 加载中
  • [1] Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10(6): 965-971. doi: 10.1029/95PA02087

    CrossRef Google Scholar

    [2] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event [J]. Nature, 2000, 406(6794): 392-395. doi: 10.1038/35019044

    CrossRef Google Scholar

    [3] Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope [J]. Marine and Petroleum Geology, 2003, 20(2): 111-128. doi: 10.1016/S0264-8172(03)00024-2

    CrossRef Google Scholar

    [4] Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis [J]. Geology, 2004, 32(1): 53-56. doi: 10.1130/G20114.1

    CrossRef Google Scholar

    [5] Wellsbury P, Goodman K, Cragg B A, et al. The geomicrobiology of deep marine sediments from Blake ridge containing methane hydrate (sites 994, 995, and 997)[M]//Paull C K, Matsumoto R, Wallace P, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 2000, 164: 379-391.

    Google Scholar

    [6] 邓希光, 吴庐山, 付少英, 等. 南海北部天然气水合物研究进展[J]. 海洋学研究, 2008, 26(2):67-74 doi: 10.3969/j.issn.1001-909X.2008.02.010

    CrossRef Google Scholar

    DENG Xiguang, WU Lushan, FU Shaoying, et al. The research advances of natural gas hydrates in northern South China Sea [J]. Journal of Marine Science, 2008, 26(2): 67-74. doi: 10.3969/j.issn.1001-909X.2008.02.010

    CrossRef Google Scholar

    [7] 吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3):356-362 doi: 10.3969/j.issn.1000-8527.2008.03.003

    CrossRef Google Scholar

    WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art [J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003

    CrossRef Google Scholar

    [8] 姚伯初, 杨木壮, 吴时国, 等. 中国海域的天然气水合物资源[J]. 现代地质, 2008, 22(3):333-341 doi: 10.3969/j.issn.1000-8527.2008.03.001

    CrossRef Google Scholar

    YAO Bochu, YANG Muzhuang, WU Shiguo, et al. The gas hydrate resources in the China seas [J]. Geoscience, 2008, 22(3): 333-341. doi: 10.3969/j.issn.1000-8527.2008.03.001

    CrossRef Google Scholar

    [9] 何家雄, 卢振权, 张伟, 等. 南海北部珠江口盆地深水区天然气水合物成因类型及成矿成藏模式[J]. 现代地质, 2015, 29(5):1024-1034 doi: 10.3969/j.issn.1000-8527.2015.05.005

    CrossRef Google Scholar

    HE Jiaxiong, LU Zhengquan, ZHANG Wei, et al. Biogenetic and Sub-biogenetic gas resource and genetic types of natural gas hydrates in Pearl River Mouth Basin, Northern Area of South China Sea [J]. Geoscience, 2015, 29(5): 1024-1034. doi: 10.3969/j.issn.1000-8527.2015.05.005

    CrossRef Google Scholar

    [10] Deng Y N, Chen F, Hu Y, et al. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea [J]. Ore Geology Reviews, 2020, 125: 103701. doi: 10.1016/j.oregeorev.2020.103701

    CrossRef Google Scholar

    [11] Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea [J]. Chemical Geology, 2016, 443: 173-181. doi: 10.1016/j.chemgeo.2016.09.029

    CrossRef Google Scholar

    [12] 邓义楠, 方允鑫, 张欣, 等. 南海琼东南海域沉积物的微量元素地球化学特征及其对天然气水合物的指示意义[J]. 海洋地质与第四纪地质, 2017, 37(5):70-81

    Google Scholar

    DENG Yi’nan, FANG Yunxin, ZHANG Xin, et al. Trace element geochemistry of sediments in Qiongdongnan area, the South China Sea, and its implications for gas hydrates [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 70-81.

    Google Scholar

    [13] 冯东, 陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1):49-57 doi: 10.3321/j.issn:1001-8166.2007.01.007

    CrossRef Google Scholar

    FENG Dong, CHEN Duofu. Barium Cycling in pore water of seafloor sediment: indicator of methane fluxes [J]. Advances in Earth Science, 2007, 22(1): 49-57. doi: 10.3321/j.issn:1001-8166.2007.01.007

    CrossRef Google Scholar

    [14] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544 doi: 10.3969/j.issn.1000-8527.2010.03.018

    CrossRef Google Scholar

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at Site HQ-48PC in Qiongdongnan Area, the North of the South China Sea, and their implication for gas hydrates [J]. Geoscience, 2010, 24(3): 534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018

    CrossRef Google Scholar

    [15] Sato H, Hayashi K I, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013

    CrossRef Google Scholar

    [16] Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003

    CrossRef Google Scholar

    [17] Ge L, Jiang S Y, Swennen R, et al. Chemical environments of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry [J]. Marine Geology, 2010, 277(1-4): 21-30. doi: 10.1016/j.margeo.2010.08.008

    CrossRef Google Scholar

    [18] Hu Y, Feng D, Peckmann J, et al. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps [J]. Chemical Geology, 2014, 381: 55-66. doi: 10.1016/j.chemgeo.2014.05.014

    CrossRef Google Scholar

    [19] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015

    CrossRef Google Scholar

    [20] Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    CrossRef Google Scholar

    [21] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021

    CrossRef Google Scholar

    [22] 张伟, 梁金强, 苏丕波, 等. 南海北部陆坡高饱和度天然气水合物气源运聚通道控藏作用[J]. 中国地质, 2018, 45(1):1-14 doi: 10.12029/gc20180101

    CrossRef Google Scholar

    ZHANG Wei, LIANG Jinqiang, SU Pibo, et al. Migrating pathways of hydrocarbons and their controlling effects associated with high saturation gas hydrate in Shenhu area, northern South China Sea [J]. Geology in China, 2018, 45(1): 1-14. doi: 10.12029/gc20180101

    CrossRef Google Scholar

    [23] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X

    CrossRef Google Scholar

    [24] 冯东, 陈多福, 苏正, 等. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展[J]. 海洋地质与第四纪地质, 2006, 26(3):125-131

    Google Scholar

    FENG Dong, CHEN Duofu, SU Zheng, et al. Anaerobic oxidation of methane and seep carbonate precipitation kinetics at seafloor [J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.

    Google Scholar

    [25] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1

    CrossRef Google Scholar

    [26] Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape basin [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 876-887. doi: 10.1016/j.jpgl.2005.10.032

    CrossRef Google Scholar

    [27] Aloisi G, Wallmann K, Bollwerk S M, et al. The effect of dissolved barium on biogeochemical processes at cold seeps [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1735-1748.

    Google Scholar

    [28] Torres M E, Bohrmann G, Dubé T E, et al. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins [J]. Geology, 2003, 31(10): 897-900. doi: 10.1130/G19652.1

    CrossRef Google Scholar

    [29] Berner R A. Diagenetic models of dissolved species in the interstitial waters of compacting sediments [J]. American Journal of Science, 1975, 275(1): 88-96. doi: 10.2475/ajs.275.1.88

    CrossRef Google Scholar

    [30] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence [J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642. doi: 10.1016/0016-7037(96)00195-0

    CrossRef Google Scholar

    [31] Helz G R, Bura-Nakić E, Mikac N, et al. New model for molybdenum behavior in euxinic waters [J]. Chemical Geology, 2011, 284(3-4): 323-332. doi: 10.1016/j.chemgeo.2011.03.012

    CrossRef Google Scholar

    [32] Zheng Y, Anderson R F, Van Geen A, et al. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin [J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178. doi: 10.1016/S0016-7037(00)00495-6

    CrossRef Google Scholar

    [33] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [34] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    CrossRef Google Scholar

    [35] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    CrossRef Google Scholar

    [36] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    CrossRef Google Scholar

    [37] Ferré B, Jansson P G, Moser M, et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions [J]. Nature Geoscience, 2020, 13(2): 144-148. doi: 10.1038/s41561-019-0515-3

    CrossRef Google Scholar

    [38] Crémière A, Lepland A, Chand S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet [J]. Nature Communications, 2016, 7: 11509. doi: 10.1038/ncomms11509

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(2416) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint