2021 Vol. 41, No. 6
Article Contents

XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. doi: 10.16562/j.cnki.0256-1492.2020101601
Citation: XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. doi: 10.16562/j.cnki.0256-1492.2020101601

Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry

More Information
  • The Mufushan Formation of Lower Cambrian is the most significant hydrocarbon source rock for shale gas in the Yangtze Platform. No exploration breakthrough has been achieved so far in the Lower Yangtze area, compared to the Middle and Upper Yangtze areas. Recently, the well of GD-1 has been completed, for which the Early Cambrian Mufushan (MFS) Formation is completelyly cored. Geochemistry of calcareous/carbonaceous mudstone of Early Cambrian Mufushan (MFS) Formation are carefully investigated for paleo-environment, provenance and tectonic settings. The samples of MFS are characterized by enriched large ion lithophile elements and depleted high field strength elements and transition elements. The analysis results show that the total REE concentrations of MFS mudstones vary from 14.81 to 107.47 ug/g. The Chemical Index of Alteration (CIA) ranges from 64.84 to 78.81. And the A-CN-K plot indicate that the source rocks has undergone a moderate weathering. In the Th/Sc versus Zr/Sc plot, most samples are located in the area between basalt and felsic igneous rocks, with negligible sedimentary recycling. Both the Al2O3/TiO2 ratios and TiO2/Zr ratios indicate an intermediate-felsic igneous provenance. The Cr/V ratios and La/Th-Hf diagrams also suggest that most of the materials are derived from intermediate-felsic rocks.

  • 加载中
  • [1] Zhou L, Kang Z H, Wang Z X, et al. Sedimentary geochemical investigation for Paleo environment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform [J]. Journal of Petroleum Science and Engineering, 2017, 159: 376-386. doi: 10.1016/j.petrol.2017.09.047

    CrossRef Google Scholar

    [2] Li Y F, Fan T L, Zhang J C, et al. Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: Implications for hydrothermal influences and paleocean redox conditions [J]. Journal of Asian Earth Sciences, 2015, 109: 100-123. doi: 10.1016/j.jseaes.2015.05.003

    CrossRef Google Scholar

    [3] Ren Y, Zhong D K, Gao C L, et al. The paleoenvironmental evolution of the Cambrian Longwangmiao Formation (Stage 4, Toyonian) on the Yangtze Platform, South China: Petrographic and geochemical constrains [J]. Marine and Petroleum Geology, 2019, 100: 391-411. doi: 10.1016/j.marpetgeo.2018.10.022

    CrossRef Google Scholar

    [4] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    Google Scholar

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.

    Google Scholar

    [5] 袁勇, 陈建文, 张银国, 等. 南黄海盆地崂山隆起海相中—古生界构造地质特征[J]. 海洋地质前沿, 2016, 32(1):48-53

    Google Scholar

    YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Geotectonic features of the marine Mesozoic-Paleozoic on the Laoshan uplift of the South Yellow Sea basin [J]. Marine Geology Frontiers, 2016, 32(1): 48-53.

    Google Scholar

    [6] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    Google Scholar

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resource ssurvey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.

    Google Scholar

    [7] CHEN Jianwen, XU Ming, LEI Baohua, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019, 2(1): 67-84.

    Google Scholar

    [8] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    Google Scholar

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.

    Google Scholar

    [9] Yuan Y, Chen J W, Zhang Y X, et al. Tectonic evolution and geological characteristics of hydrocarbon reservoirs in marine mesozoic-paleozoic strata in the South Yellow Sea basin [J]. Journal of Ocean University of China, 2018, 17(5): 1075-1090. doi: 10.1007/s11802-018-3583-x

    CrossRef Google Scholar

    [10] Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion [J]. Gondwana Research, 2008, 14(1-2): 193-208. doi: 10.1016/j.gr.2007.10.008

    CrossRef Google Scholar

    [11] Zhu B, Jiang S Y, Yang J H, et al. Rare earth element and SrNd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan province, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 132-143. doi: 10.1016/j.palaeo.2013.10.002

    CrossRef Google Scholar

    [12] Brasier M D, Corfield R M, Derry L A, et al. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia [J]. Geology, 1994, 22(5): 455-458. doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2

    CrossRef Google Scholar

    [13] Li D, Ling H F, Shields-Zhou G A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China [J]. Precambrian Research, 2013, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002

    CrossRef Google Scholar

    [14] Shen Y A, Schidlowski M. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations [J]. Geology, 2000, 28(7): 623-626. doi: 10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2

    CrossRef Google Scholar

    [15] Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in phanerozoic and precambrian supercontinents [J]. Earth-Science Reviews, 2018, 186: 173-194. doi: 10.1016/j.earscirev.2017.06.001

    CrossRef Google Scholar

    [16] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003

    CrossRef Google Scholar

    [17] Zhao X K, Wang X Q, Shi X Y, et al. Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 86-103. doi: 10.1016/j.palaeo.2018.05.009

    CrossRef Google Scholar

    [18] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up [J]. Precambrian Research, 2003, 122(1-4): 141-158. doi: 10.1016/S0301-9268(02)00209-7

    CrossRef Google Scholar

    [19] Amthor J E, Grotzinger J P, Schröder S, et al. Extinction of Cloudina and namacalathus at the Precambrian-Cambrian boundary in Oman [J]. Geology, 2003, 31(5): 431-434. doi: 10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2

    CrossRef Google Scholar

    [20] Marshall C R. Explaining the Cambrian ‘‘explosion" of animals [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001

    CrossRef Google Scholar

    [21] 郭令智. 华南板块构造[M]. 北京: 地质出版社, 2001: 1-264

    Google Scholar

    GUO Lingzhi. The Plate Tectonics of South China[M]. Beijing: Geological Publishing House, 2001: 1-264. ]

    Google Scholar

    [22] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7):1035-1053 doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block [J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [23] 刘宝珺, 许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京: 科学出版社, 1994: 1-239

    Google Scholar

    LIU Baojun, XU Xiaosong. Lithofacies Palaeogeography atlas of South China (Sinian-Triassic)[M]. Beijing: Science Press, 1994: 1-239. ]

    Google Scholar

    [24] 丘元禧. 雪峰山的构造性质与演化: 一个陆内造山带的形成演化模式[M]. 北京: 地质出版社, 1999: 1-555

    Google Scholar

    QIU Yuanxi. The Tectonic Nature and Evolution of Xuefeng Mountains: A Model for the Formation and Evolution of An Intracontinental Orogenic Belt[M]. Beijing: Geological Publishing House, 1994: 1-239. ]

    Google Scholar

    [25] 马力, 陈焕疆, 甘克文, 等. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社, 2004: 1-452

    Google Scholar

    MA Li, CHEN Huanjiang, GAN Kewen, et al. Tectonics and Marine Petroleum Geology in Southern China[M]. Beijing: Geological Publishing House, 2004: 1-452. ]

    Google Scholar

    [26] 陈洪德, 侯明才, 许效松, 等. 加里东期华南的盆地演化与层序格架[J]. 成都理工大学学报:自然科学版, 2006, 33(1):1-8

    Google Scholar

    CHEN Hongde, HOU Mingcai, XU Xiaosong, et al. Tectonic evolution and sequence stratigraphic framework in South China during Caledonian [J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2006, 33(1): 1-8.

    Google Scholar

    [27] Veizer J, Jansen S L. Basement and sedimentary recycling and continental evolution [J]. The Journal of Geology, 1979, 87(4): 341-370. doi: 10.1086/628425

    CrossRef Google Scholar

    [28] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [29] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [30] Wronkiewicz D J, Condie K C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2401-2416. doi: 10.1016/0016-7037(87)90293-6

    CrossRef Google Scholar

    [31] Johnsson M J, Stallard R F, Meade R H. First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia [J]. The Journal of Geology, 1988, 96(3): 263-277. doi: 10.1086/629219

    CrossRef Google Scholar

    [32] Nesbitt H W, Macrae N D, Kronberg B I. Amazon deep-sea fan muds: light REE enriched products of extreme chemical weathering [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 118-123. doi: 10.1016/0012-821X(90)90180-6

    CrossRef Google Scholar

    [33] Xie G L, Shen Y L, Liu S G, et al. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate [J]. Marine and Petroleum Geology, 2018, 92: 20-36. doi: 10.1016/j.marpetgeo.2018.02.019

    CrossRef Google Scholar

    [34] Zhou L, Wang Z X, Gao W L, et al. Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: Implications for depositional setting of shales [J]. Geochemistry, 2019, 79(2): 384-398. doi: 10.1016/j.chemer.2019.05.001

    CrossRef Google Scholar

    [35] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [36] Zhang L F, Sun M, Wang S G, et al. The composition of shales from the Ordos basin, China: effects of source weathering and diagenesis [J]. Sedimentary Geology, 1998, 116(1-2): 129-141. doi: 10.1016/S0037-0738(97)00074-2

    CrossRef Google Scholar

    [37] Lee Y I. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at an active continental margin [J]. Sedimentary Geology, 2009, 215(1-4): 1-12. doi: 10.1016/j.sedgeo.2008.12.004

    CrossRef Google Scholar

    [38] Dickinson W R, Beard L S, Brakenridge G R. Provenance of North American Phanerozoic sandstones in relation to tectonic setting [J]. GSA Bulletin, 1983, 94(2): 222-235. doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2

    CrossRef Google Scholar

    [39] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data [J]. Chemical Geology, 1988, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1

    CrossRef Google Scholar

    [40] McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    Google Scholar

    [41] McLennan S M, Hemming S R Taylor S R, et al. Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America [J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1153-1177. doi: 10.1016/0016-7037(95)00032-U

    CrossRef Google Scholar

    [42] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [43] Xu Z Y, Jiang S, Yao G S, et al. Tectonic and depositional setting of the lower Cambrian and lower Silurian marine shales in the Yangtze Platform, South China: Implications for shale gas exploration and production [J]. Journal of Asian Earth Sciences, 2019, 170: 1-19. doi: 10.1016/j.jseaes.2018.10.023

    CrossRef Google Scholar

    [44] Steiner M, Wallis E, Erdtmann B D. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3-4): 165-191. doi: 10.1016/S0031-0182(01)00208-5

    CrossRef Google Scholar

    [45] 刘计勇, 张飞燕, 印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质, 2018, 38(3):85-95

    Google Scholar

    LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95.

    Google Scholar

    [46] Tao H F, Sun S, Wang Q C, et al. Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: implications for provenance, source weathering, and tectonic setting [J]. Journal of Asian Earth Sciences, 2014, 87: 11-25. doi: 10.1016/j.jseaes.2014.02.007

    CrossRef Google Scholar

    [47] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [48] Johnsson M J. Processes controlling the composition of clastic sediments [J]. Special Paper of the Geological Society of America, 1993, 284(3): 1-19.

    Google Scholar

    [49] Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, et al. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance [J]. Geochemistry, 2012, 72(4): 345-362. doi: 10.1016/j.chemer.2012.07.003

    CrossRef Google Scholar

    [50] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9

    CrossRef Google Scholar

    [51] Elderfield H, Greaves M J. The rare earth elements in seawater [J]. Nature, 1982, 296(5854): 214-219. doi: 10.1038/296214a0

    CrossRef Google Scholar

    [52] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Pub, 1985.

    Google Scholar

    [53] Murray R W, Ten Brink M R B, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale [J]. Geology, 1990, 18(3): 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2

    CrossRef Google Scholar

    [54] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [55] Bock B, Mclennan S M, Hanson G N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England [J]. Sedimentology, 1998, 45(4): 635-655. doi: 10.1046/j.1365-3091.1998.00168.x

    CrossRef Google Scholar

    [56] Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios [J]. Chemical Geology, 2001, 181(1-4): 131-146. doi: 10.1016/S0009-2541(01)00278-9

    CrossRef Google Scholar

    [57] Meng Q T, Liu Z J, Bruch A A, et al. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China [J]. Journal of Asian Earth Sciences, 2012, 45: 95-105. doi: 10.1016/j.jseaes.2011.09.021

    CrossRef Google Scholar

    [58] Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, et al. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis [J]. Continental Shelf Research, 2015, 95: 15-26. doi: 10.1016/j.csr.2015.01.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1529) PDF downloads(143) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint