2021 Vol. 41, No. 1
Article Contents

HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501
Citation: HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501

Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin

More Information
  • Deep-sea ferromanganese nodules have been widely recognized as important records of the geological events and the climatic and environmental changes of deep oceans. They are also commonly regarded as potential resources in near future for their richness in a variety of valuable metals. In this paper, 12 stations of ferromanganese nodule are newly discovered from the middle of western margin of the Parece Vela Basin and samples collected and analyzed for their geochemical characteristics. These ferromanganese nodules are low in Mn, Ni, Cu and Mo (8.20%~25.24%, 0.11%~0.54%, 0.08%~0.31% and 0.01%~0.03%, respectively), high in Ti, REY (0.45%~1.88% and 0.04%~0.19%, respectively)and moderate in Co (0.06%~0.27%) when compared to the high potential areas of the global oceans such as CCZ, CIOB, PB and CI. The Ni, Cu and Mo are strongly enriched in manganese oxides, but the Ti and REY are mainly absorbed from ocean water by the iron oxyhydroxides, and the REY3+ with a monovalent element of similar size are easily replaced through coupled substitution by Ca2+ from the Ca phosphates in the iron oxyhydroxides. The Ce and Y show pronounced positive and negative anomalies in the REYSN patterns, respectively. The Ce3+ oxidation and Ce4+ fixation occur easily on the surface of the ferromanganese nodules. Once the Ce3+ in the ferromanganese nodules is oxidized to Ce4+, it is usually less mobile and will participate less in exchange reactions with the surrounding seawater. With time, this oxidative scavenging of Ce results in the preferential accumulation of redox-sensitive Ce relative to the non-redox-sensitive REY, but part of the Y is desorbed easily from the ferromanganese nodule surface, which produces positive Ce anomalies and negative Y anomalies. The research area is relatively young, and the growth of the ferromanganese nodules is not sufficient. Moreover, the surrounding terrain of the Parece Vela Basin is relatively high and there are less gateways connecting with the outside, which prevents the large-scale entry of the cold, dense and dissolved oxygen-rich bottom water such as Antarctic bottom water. The ferromanganese nodules of the region is dominated by hydrogenetic precipitation. However, the supply of the diagenetic precipitation components is too low, which will reduce the contents of valuable metals in the research aera. Therefore, it is low in resource potential.

  • 加载中
  • [1] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.

    Google Scholar

    [2] Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.

    Google Scholar

    [3] Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    Google Scholar

    [4] Mukhopadhyay R, Ghosh A K, Iyer S D. The Indian Ocean Nodule Field: Geology and Resource Potential[M]. 2nd ed. Oxford: Elsevier, 2018: 1-413.

    Google Scholar

    [5] Flint J M. Description of manganese nodules collected by the U. S. S. NERO during survey for a trans-pacific cable[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.847719.

    Google Scholar

    [6] Bezrukov P L, Skornyakova N S, Murdmaa I O, et al. (Appendix) Chemical composition of Fe-Mn nodules from the Pacific Ocean[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.735163.

    Google Scholar

    [7] Glockhoff C. Annotated record of the detailed examination of Mn deposits from ANTIPODE Expedition stations[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.858155.

    Google Scholar

    [8] Party S S. Annotated record of the detailed examination of Mn deposits from PROA Expedition stations[Z]. Scripps Institution of Oceanography, UC San Diego, PANGAEA, https://doi.org/10.1594/PANGAEA.860231.

    Google Scholar

    [9] Skornyakova N S, Zenkevich N L. (Table 2) Abundance of nodules on the bottom surface, data from grab samples[Z]. P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, PANGAEA, https://doi.org/10.1594/PANGAEA.734939.

    Google Scholar

    [10] Tomoda Y. Description of manganese nodules and crust collected from the Hakuho Maru Cruise KH-71-1, January-March, 1971, East Mariana, Caroline and Philippine Basins[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.857960.

    Google Scholar

    [11] NOAA. (National Oceanic and Atmospheric Administration, USA). Index to marine and lacustrine geological samples[Z]. http://www.ngdc.noaa.gov/geosamples/showsample.jspimlgs=imlgs0201090;0201089;0201079;0150668;0146610;0146609;0146605.

    Google Scholar

    [12] 陈穗田, Stüben D. 菲律宾海的锰结壳和锰结核[J]. 海洋学报, 1997, 19(4):109-116

    Google Scholar

    CHEN Suitian, Stüben D. Manganese crusts and nodules in the Philippine Sea [J]. Acta Oceanologica Sinica, 1997, 19(4): 109-116.

    Google Scholar

    [13] 何良彪. 马里亚纳海脊-西菲律宾海盆铁锰结核的地球化学[J]. 科学通报, 1991, 36(14):1190-1193

    Google Scholar

    HE Liangbiao. Geochemical characteristics of Fe-Mn nodules and crusts from the Mariana ridge and the west Philippine basin [J]. Chinese Science Bulletin, 1991, 36(14): 1190-1193.

    Google Scholar

    [14] Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean [J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    CrossRef Google Scholar

    [15] Party Shipboard Scientific. Initial reports of the deep sea drilling project leg 59: 4 site449: west side of the parece vela basin[R]. 1981.

    Google Scholar

    [16] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    CrossRef Google Scholar

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    CrossRef Google Scholar

    [17] Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061

    CrossRef Google Scholar

    [18] Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate [J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017

    CrossRef Google Scholar

    [19] 殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报: 地球科学版, 2019, 49(1):218-229

    Google Scholar

    YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric geological developments and their geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 218-229.

    Google Scholar

    [20] Tani K, Dunkley D J, Ohara Y. Termination of backarc spreading: zircon dating of a giant oceanic core complex [J]. Geology, 2011, 39(1): 47-50. doi: 10.1130/G31322.1

    CrossRef Google Scholar

    [21] 张臻, 李三忠. 雅浦沟-弧体系构造演化过程[J]. 海洋地质与第四纪地质, 2019, 39(5):138-146

    Google Scholar

    ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146.

    Google Scholar

    [22] Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x

    CrossRef Google Scholar

    [23] Lee I, Ogawa Y. Bottom-current deposits in the Miocene–Pliocene Misaki Formation, Izu forearc area, Japan [J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x

    CrossRef Google Scholar

    [24] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    CrossRef Google Scholar

    [25] 中国大洋矿产资源调查研究开发协会. GB/T 17229-1998 大洋多金属结核矿产勘查规程[S]. 北京: 中国标准出版社, 1998.

    Google Scholar

    China Ocean Mineral Resources Investigation, Research and Development Association. GB/T 17229-1998 The expertise for oceanic polymetallic nodules survey[S]. Beijing: China Standard Press, 1998.

    Google Scholar

    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20260-2006 海底沉积物化学分析方法[S]. 北京: 中国标准出版社, 2006.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 20260-2006 Chemcial analysis methods for marine sediment[S]. Beijing: China Standard Press, 2006.

    Google Scholar

    [27] Paul S A L, Volz J B, Bau M, et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific [J]. Geochimica et Cosmochimica Acta, 2019, 251: 56-72. doi: 10.1016/j.gca.2019.02.019

    CrossRef Google Scholar

    [28] Mclennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    Google Scholar

    [29] Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic [J]. Paleoceanography, 2008, 23(1): PA1204.

    Google Scholar

    [30] Van Andel T H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments [J]. Earth and Planetary Science Letters, 1975, 26(2): 187-194. doi: 10.1016/0012-821X(75)90086-2

    CrossRef Google Scholar

    [31] Banerjee R, Roy S, Dasgupta S, et al. Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean [J]. Marine Geology, 1999, 157(3-4): 145-158. doi: 10.1016/S0025-3227(98)00156-X

    CrossRef Google Scholar

    [32] Bonatti E, Kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. Washington: National Science Foundation, 1972.

    Google Scholar

    [33] Halbach P, Scherhag C, Hebisch U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean [J]. Mineralium Deposita, 1981, 16(1): 59-84.

    Google Scholar

    [34] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    CrossRef Google Scholar

    [35] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    CrossRef Google Scholar

    [36] Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect [J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9

    CrossRef Google Scholar

    [37] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    CrossRef Google Scholar

    [38] Halbach P, Friedrich G, Von Stackelberg U. The Manganese Nodule Belt of the Pacific Ocean–Geological Environment Nodule Formation, and Mining Aspects[M]. Stuttgart: Ferdinand Enke Verlag, 1988: 254.

    Google Scholar

    [39] Jung H S, Lee C B. Growth of diagenetic ferromanganese nodules in an oxic deep-sea sedimentary environment, northeast equatorial Pacific [J]. Marine Geology, 1999, 157(3-4): 127-144. doi: 10.1016/S0025-3227(98)00154-6

    CrossRef Google Scholar

    [40] Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7: 16539. doi: 10.1038/s41598-017-16379-1

    CrossRef Google Scholar

    [41] Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    CrossRef Google Scholar

    [42] Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    CrossRef Google Scholar

    [43] 姜学钧, 姚德, 翟世奎. 过渡金属元素Cu、Co、Ni在铁锰结核(壳)中富集的控制因素[J]. 海洋地质与第四纪地质, 2004, 24(3):41-48

    Google Scholar

    JIANG Xuejun, YAO De, ZHAI Shikui. Factors controlling the concentration of the transition metals Cu, Co and Ni in the ferromanganese deposits: an overview [J]. Marine Geology & Quaternary Geology, 2004, 24(3): 41-48.

    Google Scholar

    [44] Foster A L, Klofas J M, Hein J R, et al. Speciation of energy critical elements in marine ferromanganese crusts and nodules by principal component analysis and least-squares fits to XAFS spectra[C]//American Geophysical Union, Fall Meeting 2011.2011.

    Google Scholar

    [45] Wasylenki L E, Weeks C L, Bargar J R, et al. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite [J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 5019-5031. doi: 10.1016/j.gca.2011.06.020

    CrossRef Google Scholar

    [46] Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules [J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    CrossRef Google Scholar

    [47] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    CrossRef Google Scholar

    [48] Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    CrossRef Google Scholar

    [49] 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 54(2):197-203 doi: 10.1007/s11430-010-4070-4

    CrossRef Google Scholar

    JIANG Xuejun, LIN Xuehui, YAO De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4

    CrossRef Google Scholar

    [50] Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    CrossRef Google Scholar

    [51] Liao J L, Sun X M, Li D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies [J]. Chemical Geology, 2019, 512: 58-68. doi: 10.1016/j.chemgeo.2019.02.039

    CrossRef Google Scholar

    [52] Petersen S, Krätschell A, Augustin N, et al. News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012

    CrossRef Google Scholar

    [53] Dutkiewicz A, Judge A, Müller R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean [J]. Geology, 2020, 48(3): 293-297. doi: 10.1130/G46836.1

    CrossRef Google Scholar

    [54] Xiao C H, Wang Y H, Lin J. Constraints of magnetostratigraphic and mineralogical data on the provenance of sediments in the Parece Vela Basin of the western Pacific [J]. Journal of Asian Earth Sciences, 2020, 196: 104373. doi: 10.1016/j.jseaes.2020.104373

    CrossRef Google Scholar

    [55] 许东禹. 大洋矿产地质学[M]. 北京: 海洋出版社, 2013.

    Google Scholar

    XU Dongyu. Ocean Mineral Geology[M]. Beijing: Ocean Press, 2013.

    Google Scholar

    [56] 袁良榕, 张恩. 大洋多金属结核的矿物学特征与南极底流(AABW)活动[J]. 矿物学报, 2018, 38(5):481-489

    Google Scholar

    YUAN Liangrong, ZHANG En. Mineralogical characteristics of oceanic polymetallic nodules and the activities of the Antarctic bottom water (AABW) [J]. Acta Mineralogica Sinica, 2018, 38(5): 481-489.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2092) PDF downloads(79) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint