2021 Vol. 41, No. 1
Article Contents

LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. doi: 10.16562/j.cnki.0256-1492.2020080501
Citation: LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. doi: 10.16562/j.cnki.0256-1492.2020080501

A review on ecological response of coral reefs to global warming and oceanic acidification

More Information
  • Tropical reefs are anti-wave structures composed of corals, algae and other reef-building organisms. They are one of the world's major carbon banks and an important window to observe the linkages and interactions between the mid- to high-latitude environmental processes and tropical oceans. In the past decades, with the significant acidification and warming of global oceans, the tropical coral reefs are seriously under threat. Ocean acidification is a factor which may significantly affect coral calcification rates, inhibit the development of coral larvae, and trigger the dissolution of coral reefs. And high temperature may cause the rising of sea temperature, coral bleaching and inhibit the self-repair of coral reefs. In addition, both of the two factors may induce changes in the community structure of coral reefs. In response to the changes in these environmental factors, corals can resist heat stress to a certain extent by changing the types of symbiotic algae and regulating gene expression. However, if the emission of greenhouse gases is not properly controlled in the near future, most coral reefs on the Earth may face complete elimination by the end of this century. A more comprehensive understanding of coral reefs’ response to the key factors in the climate system change, including higher temperature and acidification, is required to cope better with changes of coral reefs in different possible scenarios in the future. The study of reef depositional sequences may provide key insights into the long-term evolving patterns of coral reefs, and serve as a valuable supplement for modern observations.

  • 加载中
  • [1] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge, United Kingdom: Cambridge University Press, 2013.

    Google Scholar

    [2] IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects[M]. Cambridge: Cambridge University Press, 2014.

    Google Scholar

    [3] Hoegh-Guldberg O, Andréfouët S, Fabricius K E, et al. Vulnerability of coral reef ecosystems in the tropical pacific to climate change[M]//Bell J D, Johnson J E, Hobday A. Vulnerability of tropical pacific fisheries and aquaculture to climate chang. Noumea: Secretariat of the Pacific Community, 2011: 251-296.

    Google Scholar

    [4] Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318(5857): 1737-1742. doi: 10.1126/science.1152509

    CrossRef Google Scholar

    [5] Pandolfi J M. Incorporating uncertainty in predicting the future response of coral reefs to climate change [J]. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 281-303. doi: 10.1146/annurev-ecolsys-120213-091811

    CrossRef Google Scholar

    [6] Hughes T P, Barnes M L, Bellwood D R, et al. Coral reefs in the Anthropocene [J]. Nature, 2017, 546(7656): 82-90. doi: 10.1038/nature22901

    CrossRef Google Scholar

    [7] Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming [J]. Nature, 2018, 560(7718): 360-364. doi: 10.1038/s41586-018-0383-9

    CrossRef Google Scholar

    [8] Smale D A, Wernberg T, Oliver E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services [J]. Nature Climate Change, 2019, 9(4): 306-312. doi: 10.1038/s41558-019-0412-1

    CrossRef Google Scholar

    [9] Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene [J]. Science, 2018, 359(6371): 80-83. doi: 10.1126/science.aan8048

    CrossRef Google Scholar

    [10] Weis V M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis [J]. Journal of Experimental Biology, 2008, 211(19): 3059-3066. doi: 10.1242/jeb.009597

    CrossRef Google Scholar

    [11] Oakley C A, Davy S K. Cell biology of coral bleaching[M]//Van Oppen M J H, Lough J M. Coral Bleaching. Cham: Springer, 2018: 189-211.

    Google Scholar

    [12] Bieri T, Onishi M, Xiang T T, et al. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching [J]. PLoS One, 2016, 11(4): e0152693. doi: 10.1371/journal.pone.0152693

    CrossRef Google Scholar

    [13] Nielsen D A, Petrou K, Gates R D. Coral bleaching from a single cell perspective [J]. The ISME Journal, 2018, 12(6): 1558-1567. doi: 10.1038/s41396-018-0080-6

    CrossRef Google Scholar

    [14] Tong H Y, Cai L, Zhou G W, et al. Temperature shapes coral-algal symbiosis in the South China Sea [J]. Scientific Reports, 2017, 7: 40118. doi: 10.1038/srep40118

    CrossRef Google Scholar

    [15] Baker A C. Reef corals bleach to survive change [J]. Nature, 2001, 411(6839): 765-766. doi: 10.1038/35081151

    CrossRef Google Scholar

    [16] Baker A C, Starger C J, McClanahan T R, et al. Corals' adaptive response to climate change [J]. Nature, 2004, 430(7001): 741. doi: 10.1038/430741a

    CrossRef Google Scholar

    [17] Jones A M, Berkelmans R, Van Oppen M J H, et al. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization [J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1641): 1359-1365. doi: 10.1098/rspb.2008.0069

    CrossRef Google Scholar

    [18] Silverstein R N, Cunning R, Baker A C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals [J]. Global Change Biology, 2015, 21(1): 236-249. doi: 10.1111/gcb.12706

    CrossRef Google Scholar

    [19] Oliver T A, Palumbi S R. Do fluctuating temperature environments elevate coral thermal tolerance? [J]. Coral Reefs, 2011, 30(2): 429-440. doi: 10.1007/s00338-011-0721-y

    CrossRef Google Scholar

    [20] Palumbi S R, Barshis D J, Traylor-Knowles N, et al. Mechanisms of reef coral resistance to future climate change [J]. Science, 2014, 344(6186): 895-898. doi: 10.1126/science.1251336

    CrossRef Google Scholar

    [21] Bay R A, Palumbi S R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals [J]. Genome Biology and Evolution, 2015, 7(6): 1602-1612. doi: 10.1093/gbe/evv085

    CrossRef Google Scholar

    [22] Mayfield A B, Fan T Y, Chen C S. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment [J]. Coral Reefs, 2013, 32(4): 909-921. doi: 10.1007/s00338-013-1067-4

    CrossRef Google Scholar

    [23] Ainsworth T D, Heron S F, Ortiz J C, et al. Climate change disables coral bleaching protection on the Great Barrier Reef [J]. Science, 2016, 352(6283): 338-342. doi: 10.1126/science.aac7125

    CrossRef Google Scholar

    [24] Tanzil J T I, Brown B E, Tudhope A W, et al. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, south Thailand between 1984 and 2005 [J]. Coral Reefs, 2009, 28(2): 519-528. doi: 10.1007/s00338-008-0457-5

    CrossRef Google Scholar

    [25] Cantin N E, Cohen A L, Karnauskas K B, et al. Ocean warming slows coral growth in the central Red Sea [J]. Science, 2010, 329(5989): 322-325. doi: 10.1126/science.1190182

    CrossRef Google Scholar

    [26] Steiner Z, Turchyn A V, Harpaz E, et al. Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea [J]. Nature Communications, 2018, 9: 3615. doi: 10.1038/s41467-018-06030-6

    CrossRef Google Scholar

    [27] McCulloch M T, D’Olivo J P, Falter J, et al. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation [J]. Nature Communications, 2017, 8: 15686. doi: 10.1038/ncomms15686

    CrossRef Google Scholar

    [28] Burt J A, Bauman A G. Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf [J]. Aquatic Ecosystem Health & Management, 2019, 23(2): 166-174.

    Google Scholar

    [29] Hughes T P, Kerry J T, Baird A H, et al. Global warming impairs stock–recruitment dynamics of corals [J]. Nature, 2019, 568(7752): 387-390. doi: 10.1038/s41586-019-1081-y

    CrossRef Google Scholar

    [30] Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: the winners and the losers [J]. Ecology Letters, 2001, 4(2): 122-131. doi: 10.1046/j.1461-0248.2001.00203.x

    CrossRef Google Scholar

    [31] Harii S, Hongo C, Ishihara M, et al. Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey [J]. Marine Ecology Progress Series, 2014, 509: 171-180. doi: 10.3354/meps10890

    CrossRef Google Scholar

    [32] Van Oppen M J H, Blackall L L. Coral microbiome dynamics, functions and design in a changing world [J]. Nature Reviews Microbiology, 2019, 17(9): 557-567. doi: 10.1038/s41579-019-0223-4

    CrossRef Google Scholar

    [33] McDevitt-Irwin J M, Baum J K, Garren M, et al. Responses of coral-associated bacterial communities to local and global stressors [J]. Frontiers in Marine Science, 2017, 4: 262. doi: 10.3389/fmars.2017.00262

    CrossRef Google Scholar

    [34] Keith S A, Baird A H, Hobbs J P A, et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching [J]. Nature Climate Change, 2018, 8(11): 986-991. doi: 10.1038/s41558-018-0314-7

    CrossRef Google Scholar

    [35] Richardson L E, Graham N A J, Pratchett M S, et al. Mass coral bleaching causes biotic homogenization of reef fish assemblages [J]. Global Change Biology, 2018, 24(7): 3117-3129. doi: 10.1111/gcb.14119

    CrossRef Google Scholar

    [36] Wilson S K, Robinson J P W, Chong-Seng K, et al. Boom and bust of keystone structure on coral reefs [J]. Coral Reefs, 2019, 38(4): 625-635. doi: 10.1007/s00338-019-01818-4

    CrossRef Google Scholar

    [37] Hughes T P, Kerry J T, Baird A H, et al. Global warming transforms coral reef assemblages [J]. Nature, 2018, 556(7702): 492-496. doi: 10.1038/s41586-018-0041-2

    CrossRef Google Scholar

    [38] Stuart-Smith R D, Brown C J, Ceccarelli D M, et al. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching [J]. Nature, 2018, 560(7716): 92-96. doi: 10.1038/s41586-018-0359-9

    CrossRef Google Scholar

    [39] Van Woesik R, Sakai K, Ganase A, et al. Revisiting the winners and the losers a decade after coral bleaching [J]. Marine Ecology Progress Series, 2011, 434: 67-76. doi: 10.3354/meps09203

    CrossRef Google Scholar

    [40] Graham N A J, Jennings S, MacNeil M A, et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs [J]. Nature, 2015, 518(7537): 94-97. doi: 10.1038/nature14140

    CrossRef Google Scholar

    [41] Tambutté E, Venn A A, Holcomb M, et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification [J]. Nature Communications, 2015, 6: 7368. doi: 10.1038/ncomms8368

    CrossRef Google Scholar

    [42] Crook E D, Cohen A L, Rebolledo-Vieyra M, et al. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11044-11049. doi: 10.1073/pnas.1301589110

    CrossRef Google Scholar

    [43] Fantazzini P, Mengoli S, Pasquini L, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation [J]. Nature Communications, 2015, 6: 7785. doi: 10.1038/ncomms8785

    CrossRef Google Scholar

    [44] Mollica N R, Guo W F, Cohen A L, et al. Ocean acidification affects coral growth by reducing skeletal density [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1754-1759. doi: 10.1073/pnas.1712806115

    CrossRef Google Scholar

    [45] Foster T, Falter J, McCulloch M, et al. Ocean acidification causes structural deformities in juvenile coral skeletons [J]. Science Advances, 2016, 2(2): e1501130. doi: 10.1126/sciadv.1501130

    CrossRef Google Scholar

    [46] Al-Horani F A, Al-Moghrabi S M, De Beer D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis [J]. Marine Biology, 2003, 142(3): 419-426. doi: 10.1007/s00227-002-0981-8

    CrossRef Google Scholar

    [47] Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification [J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 4053-4064. doi: 10.1016/j.gca.2011.04.025

    CrossRef Google Scholar

    [48] Venn A, Tambutté E, Holcomb M, et al. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater [J]. PLoS One, 2011, 6(5): e20013. doi: 10.1371/journal.pone.0020013

    CrossRef Google Scholar

    [49] McCulloch M, Falter J, Trotter J, et al. Coral resilience to ocean acidification and global warming through pH up-regulation [J]. Nature Climate Change, 2012, 2(8): 623-627. doi: 10.1038/nclimate1473

    CrossRef Google Scholar

    [50] Biscéré T, Zampighi M, Lorrain A, et al. High pCO2 promotes coral primary production [J]. Biology Letters, 2019, 15(7): 20180777. doi: 10.1098/rsbl.2018.0777

    CrossRef Google Scholar

    [51] Cooper T F, O'Leary R A, Lough J M. Growth of Western Australian corals in the Anthropocene [J]. Science, 2012, 335(6068): 593-596. doi: 10.1126/science.1214570

    CrossRef Google Scholar

    [52] Morita M, Suwa R, Iguchi A, et al. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates [J]. Zygote, 2009, 18(2): 103-107.

    Google Scholar

    [53] Nakamura M, Morita M. Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes [J]. Aquatic Biology, 2012, 15(3): 299-302. doi: 10.3354/ab00436

    CrossRef Google Scholar

    [54] Albright R, Mason B, Miller M, et al. Ocean acidification compromises recruitment success of the threatened caribbean coral Acropora palmata [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20400-20404. doi: 10.1073/pnas.1007273107

    CrossRef Google Scholar

    [55] Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success [J]. PLoS One, 2013, 8(2): e56468. doi: 10.1371/journal.pone.0056468

    CrossRef Google Scholar

    [56] Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the caribbean coral Porites astreoides [J]. Global Change Biology, 2011, 17(7): 2478-2487. doi: 10.1111/j.1365-2486.2011.02404.x

    CrossRef Google Scholar

    [57] Nakamura M, Ohki S, Suzuki A, et al. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis [J]. PLoS One, 2011, 6(1): e14521. doi: 10.1371/journal.pone.0014521

    CrossRef Google Scholar

    [58] Caroselli E, Gizzi F, Prada F, et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent [J]. Limnology and Oceanography, 2019, 64(3): 1059-1069. doi: 10.1002/lno.11097

    CrossRef Google Scholar

    [59] Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis [J]. Coral Reefs, 1999, 18(3): 273-279. doi: 10.1007/s003380050193

    CrossRef Google Scholar

    [60] Morse J W, Andersson A J, Mackenzie F T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5814-5830. doi: 10.1016/j.gca.2006.08.017

    CrossRef Google Scholar

    [61] Kuffner I B, Andersson A J, Jokiel P L, et al. Decreased abundance of crustose coralline algae due to ocean acidification [J]. Nature Geoscience, 2008, 1(2): 114-117. doi: 10.1038/ngeo100

    CrossRef Google Scholar

    [62] Vásquez-Elizondo R M, Enríquez S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH [J]. Scientific Reports, 2016, 6: 19030. doi: 10.1038/srep19030

    CrossRef Google Scholar

    [63] Cornwall C E, Comeau S, McCulloch M T. Coralline algae elevate pH at the site of calcification under ocean acidification [J]. Global Change Biology, 2017, 23(10): 4245-4256. doi: 10.1111/gcb.13673

    CrossRef Google Scholar

    [64] Cornwall C E, Comeau S, DeCarlo T M, et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability [J]. Proceedings. of the Royal Society B:Biological Sciences, 2018, 285(1884): 20181168.

    Google Scholar

    [65] Doropoulos C, Ward S, Diaz-Pulido G, et al. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions [J]. Ecology Letters, 2012, 15(4): 338-346. doi: 10.1111/j.1461-0248.2012.01743.x

    CrossRef Google Scholar

    [66] Webster N S, Uthicke S, Botté E S, et al. Ocean acidification reduces induction of coral settlement by crustose coralline algae [J]. Global Change Biology, 2013, 19(1): 303-315. doi: 10.1111/gcb.12008

    CrossRef Google Scholar

    [67] Albright R. Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals [J]. Journal of Marine Biology, 2011, 2011: 473615.

    Google Scholar

    [68] Kline D I, Teneva L, Okamoto D K, et al. Living coral tissue slows skeletal dissolution related to ocean acidification [J]. Nature Ecology & Evolution, 2019, 3(10): 1438-1444.

    Google Scholar

    [69] Eyre B D, Andersson A J, Cyronak T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean [J]. Nature Climate Change, 2014, 4(11): 969-976. doi: 10.1038/nclimate2380

    CrossRef Google Scholar

    [70] Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, et al. Coral and mollusc resistance to ocean acidification adversely affected by warming [J]. Nature Climate Change, 2011, 1(6): 308-312. doi: 10.1038/nclimate1200

    CrossRef Google Scholar

    [71] Eyre B D, Cyronak T, Drupp P, et al. Coral reefs will transition to net dissolving before end of century [J]. Science, 2018, 359(6378): 908-911. doi: 10.1126/science.aao1118

    CrossRef Google Scholar

    [72] Cyronak T, Eyre B D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments [J]. Marine Chemistry, 2016, 183: 1-12. doi: 10.1016/j.marchem.2016.05.001

    CrossRef Google Scholar

    [73] Albright R, Takeshita Y, Koweek D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification [J]. Nature, 2018, 555(7697): 516-519. doi: 10.1038/nature25968

    CrossRef Google Scholar

    [74] Albright R, Caldeira L, Hosfelt J, et al. Reversal of ocean acidification enhances net coral reef calcification [J]. Nature, 2016, 531(7594): 362-365. doi: 10.1038/nature17155

    CrossRef Google Scholar

    [75] Comeau S, Edmunds P J, Spindel N B, et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations [J]. Limnology and Oceanography, 2014, 59(3): 1081-1091. doi: 10.4319/lo.2014.59.3.1081

    CrossRef Google Scholar

    [76] Comeau S, Cornwall C E, McCulloch M T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification [J]. Scientific Reports, 2017, 7: 7573. doi: 10.1038/s41598-017-08003-z

    CrossRef Google Scholar

    [77] Bove C B, Ries J B, Davies S W, et al. Common caribbean corals exhibit highly variable responses to future acidification and warming [J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1900): 20182840. doi: 10.1098/rspb.2018.2840

    CrossRef Google Scholar

    [78] Comeau S, Cornwall C E, DeCarlo T M, et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization [J]. Nature Climate Change, 2019, 9(6): 477-483. doi: 10.1038/s41558-019-0486-9

    CrossRef Google Scholar

    [79] Comeau S, Carpenter R C, Nojiri Y, et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1790): 20141339. doi: 10.1098/rspb.2014.1339

    CrossRef Google Scholar

    [80] Clements C S, Hay M E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae [J]. Nature Ecology & Evolution, 2019, 3(2): 178-182.

    Google Scholar

    [81] Meron D, Atias E, Kruh L I, et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma [J]. The ISME Journal, 2011, 5(1): 51-60. doi: 10.1038/ismej.2010.102

    CrossRef Google Scholar

    [82] Enochs I C, Manzello D P, Donham E M, et al. Shift from coral to macroalgae dominance on a volcanically acidified reef [J]. Nature Climate Change, 2015, 5(12): 1083-1088. doi: 10.1038/nclimate2758

    CrossRef Google Scholar

    [83] Inoue S, Kayanne H, Yamamoto S, et al. Spatial community shift from hard to soft corals in acidified water [J]. Nature Climate Change, 2013, 3(7): 683-687. doi: 10.1038/nclimate1855

    CrossRef Google Scholar

    [84] Fabricius K E, Langdon C, Uthicke S, et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations [J]. Nature Climate Change, 2011, 1(3): 165-169. doi: 10.1038/nclimate1122

    CrossRef Google Scholar

    [85] Barkley H C, Cohen A L, Golbuu Y, et al. Changes in coral reef communities across a natural gradient in seawater pH [J]. Science Advances, 2015, 1(5): e1500328. doi: 10.1126/sciadv.1500328

    CrossRef Google Scholar

    [86] Kroeker K J, Micheli F, Gambi M C, et al. Divergent ecosystem responses within a benthic marine community to ocean acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14515-14520. doi: 10.1073/pnas.1107789108

    CrossRef Google Scholar

    [87] Fabricius K, De'ath G, Noonan S, et al. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1775): 20132479. doi: 10.1098/rspb.2013.2479

    CrossRef Google Scholar

    [88] Smith J N, De’ath G, Richter C, et al. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs [J]. Nature Climate Change, 2016, 6(12): 1124-1129. doi: 10.1038/nclimate3122

    CrossRef Google Scholar

    [89] Frieler K, Meinshausen M, Golly A, et al. Limiting global warming to 2°C is unlikely to save most coral reefs [J]. Nature Climate Change, 2013, 3(2): 165-170. doi: 10.1038/nclimate1674

    CrossRef Google Scholar

    [90] Van Hooidonk R, Maynard J A, Planes S. Temporary refugia for coral reefs in a warming world [J]. Nature Climate Change, 2013, 3(5): 508-511. doi: 10.1038/nclimate1829

    CrossRef Google Scholar

    [91] Van Woesik R, Köksal S, Ünal A, et al. Predicting coral dynamics through climate change [J]. Scientific Reports, 2018, 8: 17997. doi: 10.1038/s41598-018-36169-7

    CrossRef Google Scholar

    [92] Kubicek A, Breckling B, Hoegh-Guldberg O, et al. Climate change drives trait-shifts in coral reef communities [J]. Scientific Reports, 2019, 9: 3721. doi: 10.1038/s41598-019-38962-4

    CrossRef Google Scholar

    [93] DeCarlo T M, Cohen A L, Wong G T F, et al. Mass coral mortality under local amplification of 2 ℃ ocean warming [J]. Scientific Reports, 2017, 7: 44586. doi: 10.1038/srep44586

    CrossRef Google Scholar

    [94] Quattrini A M, Rodríguez E, Faircloth B C, et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time [J]. Nature Ecology & Evolution, 2020, 4(11): 1531-1538.

    Google Scholar

    [95] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [96] Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    CrossRef Google Scholar

    [97] Yi L, Jian Z M, Liu X Y, et al. Astronomical tuning and magnetostratigraphy of neogene biogenic reefs in Xisha Islands, South China Sea [J]. Science Bulletin, 2018, 63(9): 564-573. doi: 10.1016/j.scib.2018.04.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(6354) PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint