2021 Vol. 41, No. 1
Article Contents

OUYANG Siqi, XIA Jinqi, HU Bangqi, LUO Yiming. The 230Th-normalized 232Th method in reconstructing paleo-dust flux and its applications in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 22-32. doi: 10.16562/j.cnki.0256-1492.2020071101
Citation: OUYANG Siqi, XIA Jinqi, HU Bangqi, LUO Yiming. The 230Th-normalized 232Th method in reconstructing paleo-dust flux and its applications in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 22-32. doi: 10.16562/j.cnki.0256-1492.2020071101

The 230Th-normalized 232Th method in reconstructing paleo-dust flux and its applications in the Western Pacific

More Information
  • Eolian dust constitutes a potent modulator in the global climate by altering the radiative balance of the atmosphere and iron supply to the global ocean. In particular, the thorium-based method has been evoked to calibrate the sedimentary mass accumulation rate (MAR) for the past ~500,000 years, which offers an important approach for reconstructing paleo-dust flux accurately. Here, 230Th normalization, an appealing approach to calibrate MAR, is comprehensively deconvolved. In conjunction with 232Th, novel 230Th-normalized data synthesis is compiled to elucidate the precision of this method with the aid of the measured value, which ultimately in line with the Th-derived result by using convert parameter uniformly (i.e. 10.5 μg/g). Further, comparison of the dust reconstruction based on this approach between Late Holocene and the Last Glacial Maximum (LGM) also indicates the validation of this method. Within this context, 230Th-normalized 232Th serves as a reliable proxy in determining dust input to the global ocean and thus can unveil unambiguous interpretation with respect to the reconstruction of paleo-dust flux to the western Pacific during the Late Quaternary. In contrast, the paucity of applications based on this method in the western Pacific is found, by summarizing previously published dissertations, with implication of foreshadowing a broad future in utilizing this tool at the western Pacific.

  • 加载中
  • [1] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959

    CrossRef Google Scholar

    [2] Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust–climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310

    CrossRef Google Scholar

    [3] Fischer H, Siggaard-Andersen M L, Ruth U, et al. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition [J]. Reviews of Geophysics, 2007, 45(1): RG1002.

    Google Scholar

    [4] Neff J C, Ballantyne A P, Farmer G L, et al. Increasing eolian dust deposition in the western United States linked to human activity [J]. Nature Geoscience, 2008, 1(3): 189-195. doi: 10.1038/ngeo133

    CrossRef Google Scholar

    [5] Kohfeld K E, Harrison S P. Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau [J]. Quaternary Science Reviews, 2003, 22(18-19): 1859-1878. doi: 10.1016/S0277-3791(03)00166-5

    CrossRef Google Scholar

    [6] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    CrossRef Google Scholar

    [7] Martínez-García A, Sigman D M, Ren H J, et al. Iron fertilization of the Subantarctic Ocean during the last Ice Age [J]. Science, 2014, 343(6177): 1347-1350. doi: 10.1126/science.1246848

    CrossRef Google Scholar

    [8] Martin J H. Glacial-interglacial CO2 change: the iron hypothesis [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 1-13.

    Google Scholar

    [9] Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean [J]. Nature Geoscience, 2012, 5(4): 270-274. doi: 10.1038/ngeo1422

    CrossRef Google Scholar

    [10] Loveley M R, Marcantonio F, Wisler M M, et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years [J]. Nature Geoscience, 2017, 10(10): 760-764. doi: 10.1038/ngeo3024

    CrossRef Google Scholar

    [11] Coale K H, Fitzwater S E, Gordon R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean [J]. Nature, 1996, 379(6566): 621-624. doi: 10.1038/379621a0

    CrossRef Google Scholar

    [12] Kaupp L J, Measures C I, Selph K E, et al. The distribution of dissolved Fe and Al in the upper waters of the Eastern Equatorial Pacific [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(3-4): 296-310. doi: 10.1016/j.dsr2.2010.08.009

    CrossRef Google Scholar

    [13] Winckler G, Anderson R F, Jaccard S L, et al. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6119-6124. doi: 10.1073/pnas.1600616113

    CrossRef Google Scholar

    [14] Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough [J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822

    CrossRef Google Scholar

    [15] Ijiri A, Wang L J, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4): 239-261. doi: 10.1016/j.palaeo.2004.12.028

    CrossRef Google Scholar

    [16] Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8

    CrossRef Google Scholar

    [17] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    CrossRef Google Scholar

    [18] Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1

    CrossRef Google Scholar

    [19] Costa K M, Hayes C T, Anderson R F, et al. 230Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean [J]. Paleoceanography and Paleoclimatology, 2020, 35(2): e2019PA003820.

    Google Scholar

    [20] Francois R, Frank M, van der Loeff M M R, et al. 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary [J]. Paleoceanography and Paleoclimatology, 2004, 19(1): PA1018.

    Google Scholar

    [21] Henderson G M. Seawater (234U/238U) during the last 800 thousand years [J]. Earth and Planetary Science Letters, 2002, 199(1-2): 97-110. doi: 10.1016/S0012-821X(02)00556-3

    CrossRef Google Scholar

    [22] Cheng H, Edwards R L, Hoff J, et al. The half-lives of uranium-234 and thorium-230 [J]. Chemical Geology, 2000, 169(1-2): 17-33. doi: 10.1016/S0009-2541(99)00157-6

    CrossRef Google Scholar

    [23] Suman D O, Bacon M P. Variations in Holocene sedimentation in the North American Basin determined from 230Th measurements [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(6): 869-878. doi: 10.1016/0198-0149(89)90033-2

    CrossRef Google Scholar

    [24] Robinson L F, Belshaw N S, Henderson G M. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1777-1789. doi: 10.1016/j.gca.2003.10.005

    CrossRef Google Scholar

    [25] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Pub, 1985.

    Google Scholar

    [26] Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka [J]. Chemical Geology, 2001, 178(1-4): 71-94. doi: 10.1016/S0009-2541(00)00430-7

    CrossRef Google Scholar

    [27] Ding Z L, Sun J M, Yang S L, et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change [J]. Geochimica et Cosmochimica Acta, 2001, 65(6): 901-913. doi: 10.1016/S0016-7037(00)00571-8

    CrossRef Google Scholar

    [28] Weber E T, Owen R M, Dickens G R, et al. Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment [J]. Paleoceanography and Paleoclimatology, 1996, 11(1): 115-127.

    Google Scholar

    [29] Weber II E T, Owen R M, Dickens G R, et al. Causes and implications of the middle rare earth element depletion in the eolian component of North Pacific sediment [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1735-1744. doi: 10.1016/S0016-7037(98)00102-1

    CrossRef Google Scholar

    [30] Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications [J]. Chemical Geology, 1996, 133(1-4): 67-88. doi: 10.1016/S0009-2541(96)00070-8

    CrossRef Google Scholar

    [31] Liu C Q, Masuda A, Okada A, et al. A geochemical study of loess and desert sand in northern China: implications for continental crust weathering and composition [J]. Chemical Geology, 1993, 106(3-4): 359-374. doi: 10.1016/0009-2541(93)90037-J

    CrossRef Google Scholar

    [32] Olivarez A M, Owen R M, Rea D K. Geochemistry of eolian dust in Pacific pelagic sediments: implications for paleoclimatic interpretations [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158. doi: 10.1016/0016-7037(91)90093-K

    CrossRef Google Scholar

    [33] Marx S K, Kamber B S, McGowan H A. Provenance of long‐travelled dust determined with ultra‐trace‐element composition: a pilot study with samples from New Zealand glaciers [J]. Earth Surface Processes and Landforms, 2005, 30(6): 699-716. doi: 10.1002/esp.1169

    CrossRef Google Scholar

    [34] Taylor S R, McLennan S M, McCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages [J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 1897-1905. doi: 10.1016/0016-7037(83)90206-5

    CrossRef Google Scholar

    [35] Reheis M C, Budahn J R, Lamothe P J. Elemental analyses of modern dust in southern Nevada and California[R]. Denver, CO: US Geological Survey, 1999.

    Google Scholar

    [36] Johansen A M, Siefert R L, Hoffmann M R. Chemical composition of aerosols collected over the tropical North Atlantic Ocean [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15277-15312. doi: 10.1029/2000JD900024

    CrossRef Google Scholar

    [37] Freydier R, Dupre B, Lacaux J P. Precipitation chemistry in intertropical Africa [J]. Atmospheric Environment, 1998, 32(4): 749-765. doi: 10.1016/S1352-2310(97)00342-7

    CrossRef Google Scholar

    [38] Gallet S, Jahn B M, Van Vliet Lanoë B, et al. Loess geochemistry and its implications for particle origin and composition of the upper continental crust [J]. Earth and Planetary Science Letters, 1998, 156(3-4): 157-172. doi: 10.1016/S0012-821X(97)00218-5

    CrossRef Google Scholar

    [39] Hawkesworth C J, Kemp A I S. Evolution of the continental crust [J]. Nature, 2006, 443(7113): 811-817. doi: 10.1038/nature05191

    CrossRef Google Scholar

    [40] Thöle L M, Amsler H E, Moretti S, et al. Glacial-interglacial dust and export production records from the Southern Indian Ocean [J]. Earth and Planetary Science Letters, 2019, 525: 115716. doi: 10.1016/j.jpgl.2019.115716

    CrossRef Google Scholar

    [41] Lamy F, Gersonde R, Winckler G, et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods [J]. Science, 2014, 343(6169): 403-407. doi: 10.1126/science.1245424

    CrossRef Google Scholar

    [42] Noble T L, Piotrowski A M, Robinson L F, et al. Greater supply of Patagonian-sourced detritus and transport by the ACC to the Atlantic sector of the Southern Ocean during the last glacial period [J]. Earth and Planetary Science Letters, 2012, 317-318: 374-385. doi: 10.1016/j.jpgl.2011.10.007

    CrossRef Google Scholar

    [43] Middleton J L, Mukhopadhyay S, Langmuir C H, et al. Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka [J]. Earth and Planetary Science Letters, 2018, 482: 12-22. doi: 10.1016/j.jpgl.2017.10.034

    CrossRef Google Scholar

    [44] Bradtmiller L I, Anderson R F, Fleisher M Q, et al. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: implications for glacial-interglacial changes in the ocean silicon cycle [J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4216.

    Google Scholar

    [45] Anderson R F, Barker S, Fleisher M, et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130054. doi: 10.1098/rsta.2013.0054

    CrossRef Google Scholar

    [46] Palchan D, Torfstein A. A drop in Sahara dust fluxes records the northern limits of the African Humid Period [J]. Nature Communications, 2019, 10(1): 3803. doi: 10.1038/s41467-019-11701-z

    CrossRef Google Scholar

    [47] Thomas A L, Henderson G M, McCave I N. Constant bottom water flow into the Indian Ocean for the past 140 ka indicated by sediment 231Pa/230Th ratios [J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4210.

    Google Scholar

    [48] Serno S, Winckler G, Anderson R F, et al. Comparing dust flux records from the Subarctic North Pacific and Greenland: implications for atmospheric transport to Greenland and for the application of dust as a chronostratigraphic tool [J]. Paleoceanography and Paleoclimatology, 2015, 30(6): 583-600.

    Google Scholar

    [49] Jacobel A W, McManus J F, Anderson R F, et al. Climate-related response of dust flux to the central equatorial Pacific over the past 150 kyr [J]. Earth and Planetary Science Letters, 2017, 457: 160-172. doi: 10.1016/j.jpgl.2016.09.042

    CrossRef Google Scholar

    [50] Chase Z, McManus J, Mix A C, et al. Southern-ocean and glaciogenic nutrients control diatom export production on the Chile margin [J]. Quaternary Science Reviews, 2014, 99: 135-145. doi: 10.1016/j.quascirev.2014.06.015

    CrossRef Google Scholar

    [51] Adkins J, deMenocal P, Eshel G. The “African humid period” and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4203.

    Google Scholar

    [52] Skonieczny C, McGee D, Winckler G, et al. Monsoon-driven Saharan dust variability over the past 240,000 years [J]. Science Advances, 2019, 5(1): eaav1887. doi: 10.1126/sciadv.aav1887

    CrossRef Google Scholar

    [53] Anderson R F, Cheng H, Edwards R L, et al. How well can we quantify dust deposition to the ocean? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2081): 20150285. doi: 10.1098/rsta.2015.0285

    CrossRef Google Scholar

    [54] Anderson R F, Fleisher M Q, Lao Y. Glacial–interglacial variability in the delivery of dust to the central equatorial Pacific Ocean [J]. Earth and Planetary Science Letters, 2006, 242(3-4): 406-414. doi: 10.1016/j.jpgl.2005.11.061

    CrossRef Google Scholar

    [55] Bausch A R. Interactive effects of ocean acidification with other environmental drivers on marine plankton[D]. Doctor Dissertation of Columbia University, 2018.

    Google Scholar

    [56] Bradtmiller L I, Anderson R F, Fleisher M Q, et al. Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean [J]. Paleoceanography and Paleoclimatology, 2009, 24(2): PA2214.

    Google Scholar

    [57] Bradtmiller L I, Anderson R F, Fleisher M Q, et al. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: a test of the silicic acid leakage hypothesis [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4201.

    Google Scholar

    [58] Williams R H, McGee D, Kinsley C W, et al. Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks [J]. Science Advances, 2016, 2(11): e1600445. doi: 10.1126/sciadv.1600445

    CrossRef Google Scholar

    [59] Chase Z, Anderson R F, Fleisher M Q, et al. Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(3-4): 799-832. doi: 10.1016/S0967-0645(02)00595-7

    CrossRef Google Scholar

    [60] Thiagarajan N, McManus J F. Productivity and sediment focusing in the Eastern Equatorial Pacific during the last 30,000 years [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 147: 100-110. doi: 10.1016/j.dsr.2019.03.007

    CrossRef Google Scholar

    [61] Costa K M, McManus J F, Anderson R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age [J]. Nature, 2016, 529(7587): 519-522. doi: 10.1038/nature16453

    CrossRef Google Scholar

    [62] Dezileau L, Bareille G, Reyss J L, et al. Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(10): 1899-1936. doi: 10.1016/S0967-0637(00)00008-X

    CrossRef Google Scholar

    [63] Dezileau L, Ulloa O, Hebbeln D, et al. Iron control of past productivity in the coastal upwelling system off the Atacama Desert, Chile [J]. Paleoceanography and Paleoclimatology, 2004, 19(3): PA3012.

    Google Scholar

    [64] Thomson J, Colley S, Anderson R, et al. Holocene sediment fluxes in the northeast Atlantic from 230Thexcess and radiocarbon measurements [J]. Paleoceanography and Paleoclimatology, 1993, 8(5): 631-650.

    Google Scholar

    [65] Francois R, Bacon M P, Altabet M A, et al. Glacial/interglacial changes in sediment rain rate in the SW Indian sector of Subantarctic Waters as recorded by 230Th, 231Pa, U, and δ15N [J]. Paleoceanography and Paleoclimatology, 1993, 8(5): 611-629.

    Google Scholar

    [66] Francois R, Bacon M P, Suman D O. Thorium 230 profiling in deep-sea sediments: high-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years [J]. Paleoceanography and Paleoclimatology, 1990, 5(5): 761-787.

    Google Scholar

    [67] Frank M, Eckhardt J D, Eisenhauer A, et al. Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: implications of hydrothermal activity and paleoproductivity changes during the last 100,000 years [J]. Paleoceanography and Paleoclimatology, 1994, 9(4): 559-578.

    Google Scholar

    [68] Frank M, Gersonde R, van der Loeff M R, et al. Similar glacial and interglacial export bioproductivity in the Atlantic Sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2 [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 642-658.

    Google Scholar

    [69] Fukuda M, Harada N, Sato M, et al. 230Th-normalized fluxes of biogenic components from the central and southernmost Chilean margin over the past 22,000 years [J]. Geochemical Journal, 2013, 47(2): 119-135. doi: 10.2343/geochemj.2.0230

    CrossRef Google Scholar

    [70] Geibert W, Stimac I, van der Loeff M M R, et al. Dating deep-sea sediments with 230Th excess using a constant rate of supply model [J]. Paleoceanography and Paleoclimatology, 2019, 34(12): 1895-1912. doi: 10.1029/2019PA003663

    CrossRef Google Scholar

    [71] Thomson J, Nixon S, Summerhayes C P, et al. Implications for sedimentation changes on the Iberian margin over the last two glacial/interglacial transitions from (230Thexcess)0 systematics [J]. Earth and Planetary Science Letters, 1999, 165(3-4): 255-270. doi: 10.1016/S0012-821X(98)00265-9

    CrossRef Google Scholar

    [72] Jacobel A W, Anderson R F, Winckler G, et al. No evidence for equatorial Pacific dust fertilization [J]. Nature Geoscience, 2019, 12(3): 154-155. doi: 10.1038/s41561-019-0304-z

    CrossRef Google Scholar

    [73] Jacobel A W, Anderson R F, Winckler G, et al. Fluxes of thorium 232, excess barium and iron from ODP site 202-1240[Z]. PANGAEA, 2019.

    Google Scholar

    [74] Kienast S S, Friedrich T, Dubois N, et al. Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1 [J]. Paleoceanography and Paleoclimatology, 2013, 28(4): 663-674.

    Google Scholar

    [75] Kienast S S, Kienast M, Mix A C, et al. Thorium-230 normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years [J]. Paleoceanography and Paleoclimatology, 2007, 22(2): PA2213.

    Google Scholar

    [76] Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean [J]. Quaternary Science Reviews, 2011, 30(23-24): 3350-3363. doi: 10.1016/j.quascirev.2011.08.007

    CrossRef Google Scholar

    [77] Lam P J, Robinson L F, Blusztajn J, et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation [J]. Nature Geoscience, 2013, 6(8): 622-626. doi: 10.1038/ngeo1873

    CrossRef Google Scholar

    [78] Lao Y, Anderson R F, Broecker W S. Boundary scavenging and deep-sea sediment dating: constraints from excess 230Th and 231Pa [J]. Paleoceanography and Paleoclimatology, 1992, 7(6): 783-798.

    Google Scholar

    [79] Lippold J, Mulitza S, Mollenhauer G, et al. Boundary scavenging at the East Atlantic margin does not negate use of 231Pa/230Th to trace Atlantic overturning [J]. Earth and Planetary Science Letters, 2012, 333-334: 317-331. doi: 10.1016/j.jpgl.2012.04.005

    CrossRef Google Scholar

    [80] Loveley M R, Marcantonio F, Lyle M, et al. Sediment redistribution and grainsize effects on 230Th-normalized mass accumulation rates and focusing factors in the Panama Basin [J]. Earth and Planetary Science Letters, 2017, 480: 107-120. doi: 10.1016/j.jpgl.2017.09.046

    CrossRef Google Scholar

    [81] Marcantonio F, Anderson R F, Higgins S, et al. Abrupt intensification of the SW Indian Ocean monsoon during the last deglaciation: constraints from Th, Pa, and He isotopes [J]. Earth and Planetary Science Letters, 2001, 184(2): 505-514. doi: 10.1016/S0012-821X(00)00342-3

    CrossRef Google Scholar

    [82] Marcantonio F, Lyle M, Ibrahim R. Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates [J]. Geophysical Research Letters, 2014, 41(15): 5547-5554. doi: 10.1002/2014GL060477

    CrossRef Google Scholar

    [83] Veeh H H, Heggie D T, Crispe A J. Biogeochemistry of southern Australian continental slope sediments [J]. Australian Journal of Earth Sciences, 1999, 46(4): 563-575. doi: 10.1046/j.1440-0952.1999.00729.x

    CrossRef Google Scholar

    [84] McGee D, deMenocal P B, Winckler G, et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr [J]. Earth and Planetary Science Letters, 2013, 371-372: 163-176. doi: 10.1016/j.jpgl.2013.03.054

    CrossRef Google Scholar

    [85] McGee D, Marcantonio F, Lynch-Stieglitz J. Deglacial changes in dust flux in the eastern equatorial Pacific [J]. Earth and Planetary Science Letters, 2007, 257(1-2): 215-230. doi: 10.1016/j.jpgl.2007.02.033

    CrossRef Google Scholar

    [86] Meier B. Evolution of the southwest Pacific across the last glacial cycle: insights from a multi-proxy approach of biological export production[D]. Master Dissertation of Institute of Geological Sciences, University of Bern, 2015.

    Google Scholar

    [87] Veeh H H, McCorkle D C, Heggie D T. Glacial/interglacial variations of sedimentation on the West Australian continental margin: constraints from excess 230Th [J]. Marine Geology, 2000, 166(1-4): 11-30. doi: 10.1016/S0025-3227(00)00011-6

    CrossRef Google Scholar

    [88] Missiaen L, Pichat S, Waelbroeck C, et al. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2560-2573. doi: 10.1029/2017GC007410

    CrossRef Google Scholar

    [89] Muller J, McManus J F, Oppo D W, et al. Strengthening of the Northeast Monsoon over the Flores Sea, Indonesia, at the time of Heinrich event 1 [J]. Geology, 2012, 40(7): 635-638. doi: 10.1130/G32878.1

    CrossRef Google Scholar

    [90] Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 570-592.

    Google Scholar

    [91] Negre C, Zahn R, Thomas A L, et al. Reversed flow of Atlantic deep water during the Last Glacial Maximum [J]. Nature, 2010, 468(7320): 84-88. doi: 10.1038/nature09508

    CrossRef Google Scholar

    [92] Ng H C, Robinson L F, McManus J F, et al. Coherent deglacial changes in western Atlantic Ocean circulation [J]. Nature Communications, 2018, 9: 2947. doi: 10.1038/s41467-018-05312-3

    CrossRef Google Scholar

    [93] Waelbroeck C, Pichat S, Böhm E, et al. Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr [J]. Climate of the Past, 2018, 14(9): 1315-1330. doi: 10.5194/cp-14-1315-2018

    CrossRef Google Scholar

    [94] Winckler G, Anderson R F, Fleisher M Q, et al. Covariant glacial-interglacial dust fluxes in the Equatorial Pacific and Antarctica [J]. Science, 2008, 320(5872): 93-96. doi: 10.1126/science.1150595

    CrossRef Google Scholar

    [95] Pichat S, Sims K W W, François R, et al. Lower export production during glacial periods in the equatorial Pacific derived from (231Pa/230Th)xs, 0 measurements in deep-sea sediments [J]. Paleoceanography and Paleoclimatology, 2004, 19(4): PA4023.

    Google Scholar

    [96] Pourmand A, Marcantonio F, Bianchi T S, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea [J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4208.

    Google Scholar

    [97] Pourmand A, Marcantonio F, Schulz H. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka [J]. Earth and Planetary Science Letters, 2004, 221(1-4): 39-54. doi: 10.1016/S0012-821X(04)00109-8

    CrossRef Google Scholar

    [98] Sachs J P, Anderson R F. Fidelity of alkenone paleotemperatures in southern Cape Basin sediment drifts [J]. Paleoceanography and Paleoclimatology, 2003, 18(4): 6.

    Google Scholar

    [99] Saukel C. Tropical Southeast Pacific continent-ocean-atmosphere linkages since the Pliocene inferred from Eolian dust[D]. Doctor Dissertation of University of Bremen, 2011.

    Google Scholar

    [100] Wengler M, Lamy F, Struve T, et al. A geochemical approach to reconstruct modern dust fluxes and sources to the South Pacific [J]. Geochimica et Cosmochimica Acta, 2019, 264: 205-223. doi: 10.1016/j.gca.2019.08.024

    CrossRef Google Scholar

    [101] Shiau L J, Chen M T, Clemens S C, et al. Warm pool hydrological and terrestrial variability near southern Papua New Guinea over the past 50k [J]. Geophysical Research Letters, 2011, 38(8): L00F01.

    Google Scholar

    [102] Shimmield G, Mowbray S R. U-series disequilibrium, particle scavenging, and sediment accumulation during the late Pleistocene on the Owen Ridge, site 722[C]//Proceedings of the Ocean Drilling Program. Austin, Texas: College Station, TX, 1991: 465.

    Google Scholar

    [103] Singh A K, Marcantonio F, Lyle M. Sediment focusing in the Panama Basin, Eastern Equatorial Pacific Ocean [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 33-44. doi: 10.1016/j.jpgl.2011.06.020

    CrossRef Google Scholar

    [104] Uematsu M, Duce R A, Prospero J M. Deposition of atmospheric mineral particles in the North Pacific Ocean [J]. Journal of Atmospheric Chemistry, 1985, 3(1): 123-138. doi: 10.1007/BF00049372

    CrossRef Google Scholar

    [105] Prospero J M, Uematsu M, Savoie D. Mineral Aerosol transport to the Pacific Ocean[M]//Riley J R, Chester R, Duce R A. Chemical Oceanography. San Diego, California: Academic, 1989: 187-218.

    Google Scholar

    [106] Arimoto R, Duce R A, Ray B J, et al. Trace elements in the atmosphere of American Samoa: concentrations and deposition to the tropical South Pacific [J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D7): 8465-8479. doi: 10.1029/JD092iD07p08465

    CrossRef Google Scholar

    [107] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean [J]. Global Biogeochemical Cycles, 1991, 5(3): 193-259. doi: 10.1029/91GB01778

    CrossRef Google Scholar

    [108] Bory A J M, Biscaye P E, Svensson A, et al. Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland [J]. Earth and Planetary Science Letters, 2002, 196(3-4): 123-134. doi: 10.1016/S0012-821X(01)00609-4

    CrossRef Google Scholar

    [109] Fiol L A, Fornós J J, Gelabert B, et al. Dust rains in Mallorca (Western Mediterranean): their occurrence and role in some recent geological processes [J]. Catena, 2005, 63(1): 64-84. doi: 10.1016/j.catena.2005.06.012

    CrossRef Google Scholar

    [110] Arevalo Jr R, McDonough W F. Chemical variations and regional diversity observed in MORB [J]. Chemical Geology, 2010, 271(1-2): 70-85. doi: 10.1016/j.chemgeo.2009.12.013

    CrossRef Google Scholar

    [111] McGee D, Winckler G, Borunda A, et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance [J]. Geochimica et Cosmochimica Acta, 2016, 175: 47-67. doi: 10.1016/j.gca.2015.11.023

    CrossRef Google Scholar

    [112] Mahowald N M, Baker A R, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025.

    Google Scholar

    [113] Bacon M P, Spencer D W, Brewer P G. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter [J]. Earth and Planetary Science Letters, 1976, 32(2): 277-296. doi: 10.1016/0012-821X(76)90068-6

    CrossRef Google Scholar

    [114] Anderson R F, Bacon M P, Brewer P G. Removal of 230Th and 231Pa from the open ocean [J]. Earth and Planetary Science Letters, 1983, 62(1): 7-23. doi: 10.1016/0012-821X(83)90067-5

    CrossRef Google Scholar

    [115] Anderson R F, Bacon M P, Brewer P G. Removal of 230Th and 231Pa at ocean margins [J]. Earth and Planetary Science Letters, 1983, 66: 73-90. doi: 10.1016/0012-821X(83)90127-9

    CrossRef Google Scholar

    [116] Hayes C T, Anderson R F, Jaccard S L, et al. A new perspective on boundary scavenging in the North Pacific Ocean [J]. Earth and Planetary Science Letters, 2013, 369-370: 86-97. doi: 10.1016/j.jpgl.2013.03.008

    CrossRef Google Scholar

    [117] Costa K M, Jacobel A W, McManus J F, et al. Productivity patterns in the equatorial Pacific over the last 30, 000 years [J]. Global Biogeochemical Cycles, 2017, 31(5): 850-865. doi: 10.1002/2016GB005579

    CrossRef Google Scholar

    [118] Singh A K, Marcantonio F, Lyle M. Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing [J]. Earth and Planetary Science Letters, 2013, 362: 294-304. doi: 10.1016/j.jpgl.2012.12.006

    CrossRef Google Scholar

    [119] Bacon M P, Anderson R F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea [J]. Journal of Geophysical Research: Oceans, 1982, 87(C3): 2045-2056. doi: 10.1029/JC087iC03p02045

    CrossRef Google Scholar

    [120] Sarmiento J L, Gruber N. Ocean Biogeochemical Dynamics[M]. Princeton, NJ: Princeton University Press, 2006.

    Google Scholar

    [121] Luo Y, Francois R, Allen S E. Sediment 231Pa/230Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model [J]. Ocean Science, 2010, 6(1): 381-400. doi: 10.5194/os-6-381-2010

    CrossRef Google Scholar

    [122] Lippold J, Luo Y M, Francois R, et al. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation [J]. Nature Geoscience, 2012, 5(11): 813-816. doi: 10.1038/ngeo1608

    CrossRef Google Scholar

    [123] Gardner W D, Tucholke B E, Richardson M J, et al. Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic [J]. Marine Geology, 2017, 385: 304-327.

    Google Scholar

    [124] Valk O, van der Loeff M M R, Geibert W, et al. Importance of hydrothermal vents in scavenging removal of 230Th in the Nansen Basin [J]. Geophysical Research Letters, 2018, 45(19): 10539-10548. doi: 10.1029/2018GL079829

    CrossRef Google Scholar

    [125] Gardner W D, Richardson M J, Mishonov A V. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics [J]. Earth and Planetary Science Letters, 2018, 482: 126-134. doi: 10.1016/j.jpgl.2017.11.008

    CrossRef Google Scholar

    [126] Kumar N, Gwiazda R, Anderson R F, et al. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity [J]. Nature, 1993, 362(6415): 45-48. doi: 10.1038/362045a0

    CrossRef Google Scholar

    [127] Chase Z, Anderson R F, Fleisher M Q, et al. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 215-229. doi: 10.1016/S0012-821X(02)00984-6

    CrossRef Google Scholar

    [128] Roy-Barman M, Lemaître C, Ayrault S, et al. The influence of particle composition on Thorium scavenging in the Mediterranean Sea [J]. Earth and Planetary Science Letters, 2009, 286(3-4): 526-534. doi: 10.1016/j.jpgl.2009.07.018

    CrossRef Google Scholar

    [129] McGee D, Marcantonio F, McManus J F, et al. The response of excess 230Th and extraterrestrial 3He to sediment redistribution at the Blake Ridge, western North Atlantic [J]. Earth and Planetary Science Letters, 2010, 299(1-2): 138-149. doi: 10.1016/j.jpgl.2010.08.029

    CrossRef Google Scholar

    [130] Kretschmer S, Geibert W, van der Loeff M M R, et al. Grain size effects on 230Thxs inventories in opal-rich and carbonate-rich marine sediments [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 131-142. doi: 10.1016/j.jpgl.2010.03.021

    CrossRef Google Scholar

    [131] Bista D, Kienast S S, Hill P S, et al. Sediment sorting and focusing in the eastern equatorial Pacific [J]. Marine Geology, 2016, 382: 151-161. doi: 10.1016/j.margeo.2016.09.016

    CrossRef Google Scholar

    [132] Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific [J]. Earth and Planetary Science Letters, 2014, 387: 252-263. doi: 10.1016/j.jpgl.2013.11.008

    CrossRef Google Scholar

    [133] Durand A, Chase Z, Noble T L, et al. Export production in the New-Zealand region since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2017, 469: 110-122. doi: 10.1016/j.jpgl.2017.03.035

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(2788) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint