2020 Vol. 40, No. 6
Article Contents

LI Yonghang, SHAN Chenchen, SU Ming, LIU Wentao, LEI Yaping, WEN Mingming, CAI Pengjie. Application of acoustic unmanned surface vehicle to submarine geomorphology survey in shallow water[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 219-226. doi: 10.16562/j.cnki.0256-1492.2020052601
Citation: LI Yonghang, SHAN Chenchen, SU Ming, LIU Wentao, LEI Yaping, WEN Mingming, CAI Pengjie. Application of acoustic unmanned surface vehicle to submarine geomorphology survey in shallow water[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 219-226. doi: 10.16562/j.cnki.0256-1492.2020052601

Application of acoustic unmanned surface vehicle to submarine geomorphology survey in shallow water

  • Unmanned surface vehicle (USV) is an emerging platform for the oceanic survey. Small and medium-sized USVs have the advantages of the small draft, flexible maneuverability, safety, and efficiency, and increasingly become an important means for shallow water investigation. For the measurement and investigation of the shallow water environment that can not be reached by conventional ships and surveyors, USVs can play a significant role as an alternative to replace other facilities. This article is based on the C-Worker 4 USV platform, integrated with multi-beam sounding, side-scan sonar, sub-bottom profiler, and other acoustic equipment, using pulse delay time technology to acquire data simultaneously, aiming to improve the efficiency and optimize the program and save costs. In 2019, USV was applied in Chengmai Bay, Hainan Island to investigate submarine geomorphology in a shallow water environment with a water depth of 1.2~22 m. Data processing, analysis and evaluation showed that the data acquired by USV is highly reliable and can be used to identify the natural geomorphological units such as seabed reef, sand wave, sand ripple, buried channel, and the artificial geomorphology units such as waterway, channel filling deposits and submarine pipelines. The research in this paper confirms that the USV with a variety of acoustic equipment can provide precise, three-dimensional, and reliable basic data of submarine geomorphology, serving coastal geological surveys, resource exploration, engineering construction, maritime transportation, and national defense security.

  • 加载中
  • [1] 蔡锋. 中国近海海洋: 海底地形地貌[M]. 北京: 海洋出版社, 2013.

    Google Scholar

    CAI Feng. China's Offshore Ocean: Submarine Geomorphology[M]. Beijing: China Ocean Press, 2013.

    Google Scholar

    [2] 吴自银. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.

    Google Scholar

    WU Ziyin. High Resolution Submarine Geomorphology: Exploration and Processing Theory and Technology[M]. Beijing: Science Press, 2017.

    Google Scholar

    [3] 夏真, 林进清, 郑志昌. 海岸带海洋地质环境综合调查方法[J]. 地质通报, 2005, 24(6):570-575

    Google Scholar

    XIA Zhen, LIN Jinqing, ZHENG Zhichang. Integrated investigation methods for the marine geo-environment in coastal zones [J]. Geological Bulletin of China, 2005, 24(6): 570-575.

    Google Scholar

    [4] 李家良. 水面无人艇发展与应用[J]. 火力与指挥控制, 2012, 37(6):203-207

    Google Scholar

    LI Jialiang. Development and application of unmanned surface vehicle [J]. Fire Control & Command Control, 2012, 37(6): 203-207.

    Google Scholar

    [5] 周玺, 高东华, 马玉林. 无人水面艇在信息战中的应用[J]. 电子对抗, 2006(4):45-49

    Google Scholar

    ZHOU Xi, GAO Donghua, MA Yulin. Application of unmanned surface vessel in information warfare [J]. Electronic Warfare, 2006(4): 45-49.

    Google Scholar

    [6] 陈锋. 无人艇应用于海洋环境监测及海洋管理的前景与展望[J]. 机电设备, 2015, 32(6):21-24

    Google Scholar

    CHEN Feng. The application prospects for unmanned surface vehicle in marine management and law enforcement of marine surveillance [J]. Mechanical and Electrical Equipment, 2015, 32(6): 21-24.

    Google Scholar

    [7] 熊亚洲, 张晓杰, 冯海涛, 等. 一种面向多任务应用的无人水面艇[J]. 船舶工程, 2012, 34(1):16-19

    Google Scholar

    XIONG Yazhou, ZHANG Xiaojie, FENG Haitao, et al. An unmanned surface vehicle for multi-mission applications [J]. Ship Engineering, 2012, 34(1): 16-19.

    Google Scholar

    [8] 董超, 刘蔚, 李雪, 等. 无人水面艇海洋调查国内应用进展与展望[J]. 导航与控制, 2019, 18(1):1-9, 43

    Google Scholar

    DONG Chao, LIU Wei, LI Xue, et al. Marine survey with unmanned surface vehicle: application progress and prospect in China [J]. Navigation and Control, 2019, 18(1): 1-9, 43.

    Google Scholar

    [9] 马忠丽, 文杰, 梁秀梅, 等. 无人艇视觉系统多类水面目标特征提取与识别[J]. 西安交通大学学报, 2014, 48(8):60-66

    Google Scholar

    MA Zhongli, WEN Jie, LIANG Xiumei, et al. Extraction and recognition of features from multi-types of surface targets for visual systems in unmanned surface vehicle [J]. Journal of Xi'an Jiaotong University, 2014, 48(8): 60-66.

    Google Scholar

    [10] 方中华, 褚宏宪, 冯京, 等. 无人船艇在海洋地质调查中的应用及展望[J]. 海洋地质前沿, 2020, 36(3):72-77

    Google Scholar

    FANG Zhonghua, CHU Hongxian, FENG Jing, et al. Application and prospect of unmanned surface vehicle in marine geological survey [J]. Marine Geology Frontiers, 2020, 36(3): 72-77.

    Google Scholar

    [11] 王宝灿, 陈沈良, 龚文平, 等. 海南岛港湾海岸的形成与演变[M]. 北京: 海洋出版社, 2006: 65-67.

    Google Scholar

    WANG Baocan, CHEN Shenliang, GONG Wenping, et al. Formation and Evolution of Harbor Coast in Hainan Island[M]. Beijing: China Ocean Press, 2006: 65-67.

    Google Scholar

    [12] 吴海京, 年永吉. 南海东部几种典型海底地貌特征的研究与认识[J]. 地球物理学进展, 2017, 32(2):919-926

    Google Scholar

    WU Haijing, NIAN Yongji. Research and cognition for several typical seabed features in the eastern of the South China Sea [J]. Progress in geophysics, 2017, 32(2): 919-926.

    Google Scholar

    [13] 曾克峰, 刘超, 程璜鑫. 地貌学及第四纪地质学教程[M]. 武汉: 中国地质大学出版社, 2014: 169-171.

    Google Scholar

    ZENG Kefeng, LIU Chao, CHENG Huangxin. Course of Geomorphology and Quaternary Geology[M]. Wuhan: China University of Geosciences Press, 2014: 169-171.

    Google Scholar

    [14] 傅人康, 张匡华, 宋家伟. 利用侧扫声呐和单道地震提取海底微地貌的方法[J]. 海洋开发与管理, 2008, 35(4):109-112

    Google Scholar

    FU Renkang, ZHANG Kuanghua, SONG Jiawei. The methods of extracting seabed microtopography information from side scan sonar pictures and single-channel seismic profiles [J]. Ocean Development and Management, 2008, 35(4): 109-112.

    Google Scholar

    [15] Applanix. Applanix POS MV V5 installation and operation guide[Z]. 2017: 161-162.

    Google Scholar

    [16] ASV. C-worker 4 user handbook-October 2019[Z]. 2019: 16.

    Google Scholar

    [17] 冯宏, 韩礼波. 基于FPGA的声学同步控制器设计实现[J]. 声学与电子工程, 2017(1):42-44

    Google Scholar

    FENG Hong, HAN Libo. Design and implementation of acoustic synchronous controller based on FPGA [J]. Acoustics and Electronics Engineering, 2017(1): 42-44.

    Google Scholar

    [18] 刘振夏, 夏东兴. 中国近海潮流沉积沙体[M]. 北京: 海洋出版社, 2004: 38.

    Google Scholar

    LIU Zhenxia, XIA Dongxing. Tidal Sands in China Seas[M]. Beijing: China Ocean Press, 2004: 38.

    Google Scholar

    [19] Stide A H. Offshore Tidal Sands: Processes and Deposits[M]. London: Chapman and Hall, 1982: 188.

    Google Scholar

    [20] 蒋廷臣, 王晓松, 安俊杰, 等. 利用浅剖探测数据提取航道淤泥层及其程序实现[J]. 淮海工学院学报: 自然科学版, 2008, 27(1):55-59

    Google Scholar

    JIANG Tingchen, WANG Xiaosong, AN Junjie, et al. Extraction of channel silt layer by shallow detection data and program implementation [J]. Journal of Huaihai Institute of Technology: Natural Science Edition, 2008, 27(1): 55-59.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2908) PDF downloads(163) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint