2020 Vol. 40, No. 6
Article Contents

JING Pengfei, HU Gaowei, BU Qingtao, CHEN Jie, WAN Yizhao, MAO Peixiao. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501
Citation: JING Pengfei, HU Gaowei, BU Qingtao, CHEN Jie, WAN Yizhao, MAO Peixiao. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501

Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment

More Information
  • Pore-filling and fracture-filling are two of the basic occurrences of natural gas hydrates in nature. To discriminate the type of gas hydrate is critically important for resource assessment, drilling safety and environment evaluation. In this paper, simulation experiment was carried out for the pore-filling and fracture-filling hydrate reservoirs in the South China Sea. The acoustic velocity and density of the two kinds of hydrate are obtained by petrophysical simulation and acoustic experiment simulation. The results suggest that the P wave velocity of the depositional mediums containing pore-filling and fracture-filling hydrate tends to increase with the volume fraction of hydrate, while the density decreases. Furthermore, we tested the impedance and the < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M10.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M9.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M8.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M7.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > property of the two types of hydrate by combining velocity and density parameters together. The results also show that for the pore-filling hydrates, the properties of < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M10.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M9.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M8.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M7.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > calculated by the petrophysical models and experimental < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M10.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M9.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M8.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M7.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > both show positive slope, while The < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M10.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M9.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M8.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M7.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > property of the fracture-filling hydrate shows negative slope. However, the differences between the model and experiment results of fracture-filling hydrate are obvious when the volume fraction of gas hydrate is less than 40%. It means that the petrophysical for fracture-filling hydrate needs to be further improved. In addition, pore-filling and fracture-filling hydrate in GMGS2-16 Site has been verified by the property of < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M10.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M9.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M8.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M7.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M6.png'/ > . The results show that the hydrate in the upper part of the well is mainly fracture-filling hydrate, as the bottom dominated by pore-filling hydrate. The verification has been confirmed by actual drilling results.

  • 加载中
  • [1] Ghosh R, Sain K, Ojha M. Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India [J]. Journal of Geophysical Research, 2010, 115(B6): B06101.

    Google Scholar

    [2] Hu G W, Ye Y G, Zhang J, et al. Acoustic response of gas hydrate formation in sediments from South China Sea [J]. Marine and Petroleum Geology, 2014, 52: 1-8. doi: 10.1016/j.marpetgeo.2014.01.007

    CrossRef Google Scholar

    [3] 王吉亮, 王秀娟, 钱进. 裂隙充填型天然气水合物的各向异性分析及饱和度估算:以印度东海岸NGHP01-10D井为例[J]. 地球物理学报, 2013, 56(4):1312-1320 doi: 10.6038/cjg20130425

    CrossRef Google Scholar

    WANG Jiliang, WANG Xiujuan, QIAN Jin, et al. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures: a case of site NGHP01-10D, offshore eastern India [J]. Chinese Journal of Geophysics, 2013, 56(4): 1312-1320. doi: 10.6038/cjg20130425

    CrossRef Google Scholar

    [4] 景鹏飞, 胡高伟, 卜庆涛. 天然气水合物地球物理勘探技术的应用及发展[J]. 地球物理学进展, 2019, 34(5):2046-2064 doi: 10.6038/pg2019CC0259

    CrossRef Google Scholar

    JING Pengfei, HU Gaowei, BU Qingtao, et al. Application and development of geophysical technology in gas hydrate exploration [J]. Progress in Geophysics, 2019, 34(5): 2046-2064. doi: 10.6038/pg2019CC0259

    CrossRef Google Scholar

    [5] 钱进, 王秀娟, 董冬冬, 等. 裂隙充填型天然气水合物的地震各向异性数值模拟[J]. 海洋地质与第四纪地质, 2015, 35(4):149-154

    Google Scholar

    QIAN Jin, WANG Xiujuan, DONG Dongdong, et al. Seismic anisotropic modeling of fracture-filling gas hydrate [J]. Marine Geology & Quaternary Geology, 2015, 35(4): 149-154.

    Google Scholar

    [6] Holland M, Schultheiss P, Roberts J, et al. Observed gas hydrate morphologies in marine sediments[C]//Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, British Columbia, 2008.

    Google Scholar

    [7] Wang X J, Hutchinson D R, Wu S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea [J]. Journal of Geophysical Research, 2011, 116(B5): B05102.

    Google Scholar

    [8] Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate joint industry project leg II logging-while-drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. doi: 10.1016/j.marpetgeo.2011.08.003

    CrossRef Google Scholar

    [9] Horozal S, Lee G H, Yi B Y, et al. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector [J]. Marine Geology, 2009, 258(1-4): 126-138. doi: 10.1016/j.margeo.2008.12.004

    CrossRef Google Scholar

    [10] Collett T S, Scientific Party N. Occurrence of marine gas hydrates in the Indian continental margin: results of the Indian National Gas Hydrate Program (NGHP) expedition 01[C]//Proceedings of American Geophysical Union, Fall Meeting 2007. Washington, DC: American Geophysical Union, 2007.

    Google Scholar

    [11] Cook A, Goldberg D. Stress and gas hydrate-filled fracture distribution, Krishna-Godavari basin, India[C]//Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, British Columbia, 2008.

    Google Scholar

    [12] Liu T, Liu X W. Identification of morphologies of gas hydrate distribution based on AVA analysis [J]. Geophysics, 2018, 83(3): B143-B154. doi: 10.1190/geo2017-0072.1

    CrossRef Google Scholar

    [13] Yang S X, Zhang G X, Zhang M, et al. A complex gas hydrate system in the Dongsha area, South China Sea: results from drilling expedition GMGS2[C]//Proceeding of the 8th International Conference on Gas Hydrate. Beijing: China Geological Survey, 2014.

    Google Scholar

    [14] Lee M W, Collett T S. Gas hydrate and free gas saturations estimated from velocity logs on hydrate ridge, offshore Oregon, USA[M]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results. Texas College Station, 2006.

    Google Scholar

    [15] 戴丹青, 刘学伟. 根据BSR界面RVF特性判断水合物的赋存状态[C]//2015年“海洋地质、矿山资源与环境”学术研讨会论文集. 广州: 中国地质学会, 中国海洋学会, 中国矿物岩石地球化学学会, 广东省地质学会, 2015.

    Google Scholar

    DAI Danqing, LIU Xuewei. Identification of hydrate occurrence state according to the characteristics of RVF at BSR interface[C]//Conference on Marine Geology & Mining Resources and Environment. 2015.

    Google Scholar

    [16] Lee M W, Collett T S. Characteristics and interpretation of fracture-filled gas hydrate – An example from the Ulleung Basin, East Sea of Korea [J]. Marine and Petroleum Geology, 2013, 47: 168-181. doi: 10.1016/j.marpetgeo.2012.09.003

    CrossRef Google Scholar

    [17] Liu T, Liu X W, Zhu T Y. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate [J]. Marine and Petroleum Geology, 2020, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036

    CrossRef Google Scholar

    [18] Sriram G, Dewangan P, Ramprasad T, et al. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit [J]. Journal of Geophysical Research, 2013, 118(5): 2258-2274.

    Google Scholar

    [19] Liu T, Liu X W. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea [J]. Journal of Geophysics and Engineering, 2018, 15(3): 1008-1022. doi: 10.1088/1742-2140/aaaba1

    CrossRef Google Scholar

    [20] Daigle H, Dugan B. Origin and evolution of fracture-hosted methane hydrate deposits [J]. Journal of Geophysical Research, 2010, 115(B11).

    Google Scholar

    [21] 胡高伟. 南海沉积物的水合物声学特性模拟实验研究[D]. 中国地质大学博士学位论文, 2010.

    Google Scholar

    HU Gaowei. Experimental study on acoustic responses of gas hydrates to sediments from South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2010.

    Google Scholar

    [22] 林霖, 梁劲, 郭依群, 等. 利用声波速度测井估算海域天然气水合物饱和度[J]. 测井技术, 2014, 38(2):234-238

    Google Scholar

    LIN Lin, LIANG Jin, GUO Yiqun, et al. Estimating saturation of gas hydrates within marine sediments using sonic log data [J]. Well Logging Technology, 2014, 38(2): 234-238.

    Google Scholar

    [23] Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research, 2009, 114(B7): B07102.

    Google Scholar

    [24] Sha Z B, Liang J Q, Zhang G X, et al. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations [J]. Marine Geology, 2015, 366: 69-78. doi: 10.1016/j.margeo.2015.04.006

    CrossRef Google Scholar

    [25] Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling [J]. Geophysical Research Letters, 1999, 26(13): 2021-2024. doi: 10.1029/1999GL900421

    CrossRef Google Scholar

    [26] Ecker C. Seismic characterization of methane hydrate structures[D]. Doctor Dissertation of Stanford University, 1998.

    Google Scholar

    [27] Nur A, Mavko G, Dvorkin J, et al. Critical porosity: a key to relating physical properties to porosity in rocks [J]. The Leading Edge, 1998, 17(3): 357-362. doi: 10.1190/1.1437977

    CrossRef Google Scholar

    [28] Dvorkin J, Nur A. Rock physics for characterization of gas hydrates[M]//Howell D G. The Future of Energy Gases. Washington: United States Government Printing Office, 1993.

    Google Scholar

    [29] Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments: Rock physics modeling [J]. Geophysical Research Letters, 1999, 26(12): 1781-1784. doi: 10.1029/1999GL900332

    CrossRef Google Scholar

    [30] Lee M W. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments [J]. Geophysics, 2002, 67(6): 1711-1719. doi: 10.1190/1.1527072

    CrossRef Google Scholar

    [31] Hill R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349-354. doi: 10.1088/0370-1298/65/5/307

    CrossRef Google Scholar

    [32] Lee M W, Waite W F. Estimating pore-space gas hydrate saturations from well log acoustic data [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07008.

    Google Scholar

    [33] Mindlin R D. Compliance of elastic bodies in contact [J]. Journal of Applied Mechanics, 1949, 16: 259-268.

    Google Scholar

    [34] White J E. Seismic Waves: Radiation, Transmission, and Attenuation[M]. New York: McGraw Hill, 1965.

    Google Scholar

    [35] Thomsen L. Weak elastic anisotropy [J]. Geophysics, 1986, 51(10): 1954-1966. doi: 10.1190/1.1442051

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(1)

Article Metrics

Article views(7496) PDF downloads(58) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint