2020 Vol. 40, No. 3
Article Contents

HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401
Citation: HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401

Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay

More Information
  • Large amount of shallow biogenic gas occurs in the marine sediments of Hangzhou Bay. As an important greenhouse gas and carbon carrier, methane and its anaerobic oxidation (AOM) and carbon cycle within the sulfate-methane transition zone (SMTZ) in marine sediments are of great significance for accurately assessment of the eco-environmental effects. Based on the test results and geochemical parameters, such as those from pore water and headspace gas in the YS6 sediment cores, following the principles of mass conservation and carbon isotope mass conservation, the internal carbon cycle in SMTZ for the YS6 was quantitatively studied with the “box model”. It is found that the SMTZ occurs in the 6~8 mbsf sediment layer.In addition to organoclastic sulfate reduction (OSR), AOM and carbonate precipitation (CP), there are concealed methanogenesis by carbon dioxide reduction of DIC produced from AOM (CR). However, methanogenesis from organic matter degradation (ME) almost not observed in the SMTZ-internal carbon cycling. The reaction rates of OSR, AOM, CP, CR and ME were 9.14 mmol·m−2·yr−1, 7.42 mmol·m−2·yr−1, 4.36 mmol·m−2·yr−1, 2.72 mmol·m−2·yr−1 and 0.00 mmol·m−2·yr−1, respectively. The contribution rate of each reaction to pore water DIC in SMTZ was in an order of OSR>AOM>ME (ME= 0), while the consumption rate was CP>CR. Methane diffused upward from deeper methane zone was not the only electron donor to drive the internal sulfate reduction (SR) in SMTZ. CR and OSR were also the important factors for sulfate flux into SMTZ to be greater than methan , and the obvious 13C-depletion of methane in the lower border of SMTZ was also related to the CR. When quantitatively evaluating the relative strength of AOM in marine sediments, the “cryptic” methanogenesis (such as CR, ME, etc.) in SMTZ cannot be ignored.

  • 加载中
  • [1] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002

    CrossRef Google Scholar

    [2] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [3] Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective [J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002

    CrossRef Google Scholar

    [4] Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf [J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3707-3715. doi: 10.1016/0016-7037(95)00277-7

    CrossRef Google Scholar

    [5] Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    CrossRef Google Scholar

    [6] Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-245. doi: 10.1038/s41561-018-0122-8

    CrossRef Google Scholar

    [7] Beulig F, Røy H, McGlynn S E, et al. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea [J]. ISME J, 2018, 13(2): 250-262.

    Google Scholar

    [8] Flury S, Røy H, Dale A W, et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark) [J]. Geochimica et Cosmochimica Acta, 2016, 188: 297-309. doi: 10.1016/j.gca.2016.05.037

    CrossRef Google Scholar

    [9] Komada T, Burdige D J, Li H L, et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland [J]. Geochimica et Cosmochimica Acta, 2016, 176: 259-278. doi: 10.1016/j.gca.2015.12.022

    CrossRef Google Scholar

    [10] Yoshinaga M Y, Holler T, Goldhammer T, et al. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane [J]. Nature Geoscience, 2014, 7(3): 190-194. doi: 10.1038/ngeo2069

    CrossRef Google Scholar

    [11] Kim S, Choi K, Chung J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry [J]. International Journal of Hydrogen Energy, 2013, 38(8): 3488-3496. doi: 10.1016/j.ijhydene.2012.12.007

    CrossRef Google Scholar

    [12] Lash G G. Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA [J]. Marine and Petroleum Geology, 2018, 91: 470-479. doi: 10.1016/j.marpetgeo.2018.01.032

    CrossRef Google Scholar

    [13] Chuang P C, Frank Y T, Wallmann K, et al. Carbon isotope exchange during Anaerobic Oxidation of Methane (AOM) in sediments of the northeastern South China Sea [J]. Geochimica et Cosmochimica Acta, 2019, 246: 138-155. doi: 10.1016/j.gca.2018.11.003

    CrossRef Google Scholar

    [14] Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y

    CrossRef Google Scholar

    [15] Ni Y Y, Dai J X, Zou C N, et al. Geochemical characteristics of biogenic gases in China [J]. International Journal of Coal Geology, 2013, 113: 76-87. doi: 10.1016/j.coal.2012.07.003

    CrossRef Google Scholar

    [16] 柴小平, 胡宝兰, 魏娜, 等. 杭州湾及邻近海域表层沉积物重金属的分布、来源及评价[J]. 环境科学学报, 2015, 35(12):3906-3916

    Google Scholar

    CHAI Xiaoping, HU Baolan, WEI Na, et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 3906-3916.

    Google Scholar

    [17] 夏小明, 杨辉, 李炎, 等. 长江口-杭州湾毗连海区的现代沉积速率[J]. 沉积学报, 2004, 22(1):130-135 doi: 10.3969/j.issn.1000-0550.2004.01.020

    CrossRef Google Scholar

    XIA Xiaming, YANG Hui, LI Yan, et al. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay [J]. Acta Sedimentologica Sinica, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020

    CrossRef Google Scholar

    [18] Xu F L, Ji Z Q, Wang K, et al. The distribution of sedimentary organic matter and implication of its transfer from Changjiang Estuary to Hangzhou Bay, China [J]. Open Journal of Marine Science, 2016, 6(1): 103-114. doi: 10.4236/ojms.2016.61010

    CrossRef Google Scholar

    [19] 陈少平, 孙家振, 沈传波, 等. 杭州湾地区浅层气成藏条件分析[J]. 华东地质学院学报, 2003, 26(4):352-356

    Google Scholar

    CHEN Shaoping, SUN Jiazhen, SHEN Chuanbo, et al. Reservoir formation condition of shallow gas in the area of Hangzhou Bay [J]. Journal of East China Geological Institute, 2003, 26(4): 352-356.

    Google Scholar

    [20] 胡新强, 顾兆峰, 张训华, 等. 长江口外海域浅层气地震反射形态特征及分布[J]. 海洋地质与第四纪地质, 2016, 36(1):151-157

    Google Scholar

    HU Xinqiang, GU Zhaofeng, ZHANG Xunhua, et al. Seismic shape features and distribution of shallow gas in the sea area off the Yangtze River Estuary [J]. Marine Geology & Quaternary Geology, 2016, 36(1): 151-157.

    Google Scholar

    [21] 杨涛, 蒋少涌, 赖鸣远, 等. 海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法[J]. 地球学报, 2005, 26(S1):51-52

    Google Scholar

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. An analytical method for carbon isotopic composition of dissolved inorganic carbon (DIC) in pore waters from marine sediments [J]. Acta Geoscientica Sinica, 2005, 26(S1): 51-52.

    Google Scholar

    [22] 杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6):675-680 doi: 10.3321/j.issn:0379-1726.2006.06.014

    CrossRef Google Scholar

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer [J]. Geochimica, 2006, 35(6): 675-680. doi: 10.3321/j.issn:0379-1726.2006.06.014

    CrossRef Google Scholar

    [23] 张媛媛, 林学辉, 贺行良, 等. 离子色谱法同时测定海洋沉积物中氯和硫[J]. 分析科学学报, 2015, 31(2):249-252

    Google Scholar

    ZHANG Yuanyuan, LIN Xuehui, HE Xingliang, et al. Determination of chlorine and sulfur in marine sediment by ion chromatography [J]. Journal of Analytical Science, 2015, 31(2): 249-252.

    Google Scholar

    [24] Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001

    CrossRef Google Scholar

    [25] 贺行良, 夏宁, 刘昌岭, 等. FID/TCD并联气相色谱法测定天然气水合物的气体组成[J]. 分析测试学报, 2012, 31(2):206-210 doi: 10.3969/j.issn.1004-4957.2012.02.017

    CrossRef Google Scholar

    HE Xingliang, XIA Ning, LIU Changling, et al. Compositional analysis of gases in natural gas hydrates by GC-FID/TCD [J]. Journal of Instrumental Analysis, 2012, 31(2): 206-210. doi: 10.3969/j.issn.1004-4957.2012.02.017

    CrossRef Google Scholar

    [26] 贺行良, 刘昌岭, 王江涛, 等. 气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J]. 岩矿测试, 2012, 31(1):154-158 doi: 10.3969/j.issn.0254-5357.2012.01.021

    CrossRef Google Scholar

    HE Xingliang, LIU Changling, WANG Jiangtao, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate-bound gases by gas chromatography-isotope ratio mass spectrometry [J]. Rock and Mineral Analysis, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021

    CrossRef Google Scholar

    [27] Iversen N, Jørgensen B B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity [J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 571-578. doi: 10.1016/0016-7037(93)90368-7

    CrossRef Google Scholar

    [28] Boudreau B P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments[M]. Berlin: Springer, 1997.

    Google Scholar

    [29] Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.

    Google Scholar

    [30] Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) [J]. Chemical Geology, 2011, 284(3-4): 251-261. doi: 10.1016/j.chemgeo.2011.03.002

    CrossRef Google Scholar

    [31] Hu C Y, Yang T F, Burr G S, et al. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan [J]. Journal of Asian Earth Sciences, 2017, 149: 172-183. doi: 10.1016/j.jseaes.2017.07.002

    CrossRef Google Scholar

    [32] Rees C E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes [J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1141-1162. doi: 10.1016/0016-7037(73)90052-5

    CrossRef Google Scholar

    [33] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007

    CrossRef Google Scholar

    [34] Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    CrossRef Google Scholar

    [35] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    CrossRef Google Scholar

    [36] Treude T, Krause S, Maltby J, et al. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling [J]. Geochimica et Cosmochimica Acta, 2014, 144: 217-237. doi: 10.1016/j.gca.2014.08.018

    CrossRef Google Scholar

    [37] Borowski W S, Paull C K, Ussler III W. Carbon cycling within the upper methanogenic zone of continental rise sediments; an example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits [J]. Marine Chemistry, 1997, 57(3-4): 299-311. doi: 10.1016/S0304-4203(97)00019-4

    CrossRef Google Scholar

    [38] Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine and Petroleum Geology, 2014, 49: 162-175. doi: 10.1016/j.marpetgeo.2013.10.011

    CrossRef Google Scholar

    [39] Wallace P J, Dickens G R, Paull C K, et al. Effects of core retrieval and degassing on the carbon isotope composition of methane in gas hydrate-and free gas-bearing sediments from the Blake Ridge[C]//Proceedings of the Ocean Drilling Program. Scientific Results. College Station, TX: Texas A&M University, 2000, 164: 101-112.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2163) PDF downloads(65) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint