2020 Vol. 40, No. 3
Article Contents

LIU Lei, GUAN Hongxiang, FENG Junxi, XU Lanfang, MAO Shengyi, LIU Lihua. Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 144-159. doi: 10.16562/j.cnki.0256-1492.2020021101
Citation: LIU Lei, GUAN Hongxiang, FENG Junxi, XU Lanfang, MAO Shengyi, LIU Lihua. Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 144-159. doi: 10.16562/j.cnki.0256-1492.2020021101

Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea

More Information
  • The South China Sea (SCS), under the control of multiple climate patterns, is an ideal region for studies of paleo-climate and the East Asian monsoon. In this paper, we studied the composition and characteristics of isoGDGTs to further identify their sources and used the outspread TEXH86 index to reconstruct the sea surface temperature (SST) of the northern SCS for the past 31 ka quantificationally. By calculating the Methane Index and BIT indexes, we found that the isoGDGTs mainly came from Thaumarchaeota, and are suitable for TEXH86 appliance. TEXH86 temperatures exhibit distinct glacial–interglacial cycles, and is very similar to the SSTs from foraminifera and UK'37 in the northern SCS. TEXH86 SSTs showed a decline trend during the Heinrich events (H1-3) and an abrupt rise at 14.6 kaBP before Bølling–Allerød (BA) warming, suggesting a tight climate teleconnection between the northern SCS and the North Atlantic region in last Deglaciation. The SST differences (ΔSSTs) between the SCS and the core MD01-2421 in the North Pacific was calculated and used to reveal the intensity of East Asian Winter monsoon. ΔSSTs showed that the EAWM intensity firstly increased before the BA warming, reached a maximum in the Younger Dryas period, decreased again in early Holocene and slowly increased in Late and Middle Holocene. The ∆SSTs results coincide with previous findings on the EAWM variations and constitute a feasible means of long-term EAWM intensity reconstruction.

  • 加载中
  • [1] Lau K M, Kim M K, Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau [J]. Climate Dynamics, 2006, 26(7-8): 855-864. doi: 10.1007/s00382-006-0114-z

    CrossRef Google Scholar

    [2] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036

    CrossRef Google Scholar

    [3] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296

    CrossRef Google Scholar

    [4] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [5] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon [J]. Nature, 2007, 445(7123): 74-77. doi: 10.1038/nature05431

    CrossRef Google Scholar

    [6] 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2018.

    Google Scholar

    LI Mingkun. Paleocliamte and paleoenvironment evolutions in the Northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of University of Chinese Academy of Sciences (Guangzhou Institute of geochemistry, Chinese Academy of Sciences), 2018.

    Google Scholar

    [7] Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records [J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004

    CrossRef Google Scholar

    [8] 许慎栋, 陈文煌, 邓文峰, 等. 南海北部沉积物中浮游有孔虫Globigerinoides ruber壳体氧同位素指示的冬季表层海水温度[J]. 海洋地质与第四纪地质, 2016, 36(2):101-107

    Google Scholar

    XU Shendong, CHEN Wenhuang, DENG Wenfeng, et al. Winter surface seawater temperature in the northern South China Sea induced from temperature index of shell oxygen isotope of Globigerinoides ruber [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 101-107.

    Google Scholar

    [9] Lin D C, Chen M T, Yamamoto M, et al. Millennial-scale alkenone sea surface temperature changes in the northern South China Sea during the past 45, 000 years (MD972146) [J]. Quaternary International, 2014, 333: 207-215. doi: 10.1016/j.quaint.2014.03.062

    CrossRef Google Scholar

    [10] Yamamoto M, Sai H, Chen M T, et al. The East Asian winter monsoon variability in response to precession during the past 150 000 yr [J]. Climate of the Past, 2013, 9(6): 2777-2788. doi: 10.5194/cp-9-2777-2013

    CrossRef Google Scholar

    [11] Li D W, Zhao M X, Tian J, et al. Comparison and implication of TEX86 and U-37K' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376: 213-223.

    Google Scholar

    [12] Shintani T, Yamamoto M, Chen M T. Paleoenvironmental changes in the northern South China Sea over the past 28, 000 years: A study of TEX86-derived sea surface temperatures and terrestrial biomarkers [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1221-1229. doi: 10.1016/j.jseaes.2010.09.013

    CrossRef Google Scholar

    [13] Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014

    CrossRef Google Scholar

    [14] Li L, Wang H, Li J R, et al. Changes in sea surface temperature in western South China Sea over the past 450 ka [J]. Chinese Science Bulletin, 2009, 54(18): 3335-3343. doi: 10.1007/s11434-009-0083-9

    CrossRef Google Scholar

    [15] Shintani T, Yamamoto M, Chen M T. Slow warming of the northern South China Sea during the last deglaciation [J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4): 341-346. doi: 10.3319/TAO.2008.19.4.341(IMAGES)

    CrossRef Google Scholar

    [16] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the south China Sea [J]. Marine Geology, 1999, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0

    CrossRef Google Scholar

    [17] Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography and Paleoclimatology, 1999, 14(2): 224-231.

    Google Scholar

    [18] Huang C Y, Liew P M, Zhao M X, et al. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 59-72. doi: 10.1016/S0012-821X(96)00203-8

    CrossRef Google Scholar

    [19] 王小华, 陈荣华, 赵庆英, 等. 2009—2010年南海北部浮游有孔虫通量和稳定同位素季节变化及其对东亚季风的响应[J]. 海洋地质与第四纪地质, 2014, 34(1):103-115

    Google Scholar

    WANG Xiaohua, CHEN Ronghua, ZHAO Qingying, et al. The influence of East Asian Monsoon on seasonal variations in planktonic foraminiferal flux and stable isotope in the northern South China Sea during 2009-2010 [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 103-115.

    Google Scholar

    [20] Liu Q Y, Jiang X, Xie S P, et al. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability [J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07012.

    Google Scholar

    [21] Koutavas A, Lynch-Stieglitz J, Marchitto T M Jr, et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297(5579): 226-230. doi: 10.1126/science.1072376

    CrossRef Google Scholar

    [22] Wang P X, Wang L J, Bian Y H, et al. Late quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles [J]. Marine Geology, 1995, 127(1-4): 145-165. doi: 10.1016/0025-3227(95)00008-M

    CrossRef Google Scholar

    [23] Wang L J, Wang P X. Late quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 77-90.

    Google Scholar

    [24] Wei G J, Li X H, Nie B F, et al. High resolution Porites Mg/Ca thermometer for the north of the South China Sea [J]. Chinese Science Bulletin, 1999, 44(3): 273-276. doi: 10.1007/BF02896292

    CrossRef Google Scholar

    [25] Lin D C, Chen M T, Yamamoto M, et al. Hydrographic variability in the northern South China Sea over the past 45, 000 years: New insights based on temperature reconstructions by Uk’37 and TEXH86 proxies from a marine sediment core (MD972146) [J]. Quaternary International, 2017, 459: 1-16. doi: 10.1016/j.quaint.2017.09.029

    CrossRef Google Scholar

    [26] Jia G D, Zhang J, Chen J F, et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea [J]. Organic Geochemistry, 2012, 50: 68-77. doi: 10.1016/j.orggeochem.2012.07.002

    CrossRef Google Scholar

    [27] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality [J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003

    CrossRef Google Scholar

    [28] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 265-274. doi: 10.1016/S0012-821X(02)00979-2

    CrossRef Google Scholar

    [29] Uda I, Sugai A, Itoh Y H, et al. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature [J]. Lipids, 2001, 36(1): 103-105. doi: 10.1007/s11745-001-0914-2

    CrossRef Google Scholar

    [30] Gliozzi A, Paoli G, De Rosa M, et al. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1983, 735(2): 234-242. doi: 10.1016/0005-2736(83)90298-5

    CrossRef Google Scholar

    [31] Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2004, 19(4): PA4028.

    Google Scholar

    [32] Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4639-4654. doi: 10.1016/j.gca.2010.05.027

    CrossRef Google Scholar

    [33] Pelejero C, Grimalt J O. The correlation between the U37k index and sea surface temperatures in the warm boundary: The South China Sea [J]. Geochimica et Cosmochimica Acta, 1997, 61(22): 4789-4797. doi: 10.1016/S0016-7037(97)00280-9

    CrossRef Google Scholar

    [34] Wei Y L, Wang J X, Liu J, et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the south china sea and their implications for paleoclimate studies [J]. Applied and Environmental Microbiology, 2011, 77(21): 7479-7489. doi: 10.1128/AEM.00580-11

    CrossRef Google Scholar

    [35] Zhang J, Bai Y, Xu S D, et al. Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea [J]. Organic Geochemistry, 2013, 58: 115-120. doi: 10.1016/j.orggeochem.2013.02.012

    CrossRef Google Scholar

    [36] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 107-116. doi: 10.1016/j.jpgl.2004.05.012

    CrossRef Google Scholar

    [37] Zhang Y G, Zhang C L, Liu X L, et al. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 525-534. doi: 10.1016/j.jpgl.2011.05.031

    CrossRef Google Scholar

    [38] Damsté J S S, Ossebaar J, Schouten S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake [J]. Quaternary Science Reviews, 2012, 50: 43-54. doi: 10.1016/j.quascirev.2012.07.001

    CrossRef Google Scholar

    [39] Weijers J W H, Lim K L H, Aquilina A, et al. Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(10): Q10010. doi: 10.1029/2011GC003724

    CrossRef Google Scholar

    [40] Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540.

    Google Scholar

    [41] Yeh Y C, Sibuet J C, Hsu S K, et al. Tectonic evolution of the Northeastern South China Sea from seismic interpretation [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6): B0610. doi: 10.1029/2009JB006354

    CrossRef Google Scholar

    [42] Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids [J]. Organic Geochemistry, 2006, 37(9): 1036-1041. doi: 10.1016/j.orggeochem.2006.05.008

    CrossRef Google Scholar

    [43] Hopmans E C, Schouten S, Damsté J S S. The effect of improved chromatography on GDGT-based palaeoproxies [J]. Organic Geochemistry, 2016, 93: 1-6. doi: 10.1016/j.orggeochem.2015.12.006

    CrossRef Google Scholar

    [44] Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1757-1772.

    Google Scholar

    [45] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310. doi: 10.1016/0016-7037(88)90132-9

    CrossRef Google Scholar

    [46] Rasmussen S O, Seierstad I K, Andersen K K, et al. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications [J]. Quaternary Science Reviews, 2008, 27(1-2): 18-28. doi: 10.1016/j.quascirev.2007.01.016

    CrossRef Google Scholar

    [47] Isono D, Yamamoto M, Irino T, et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene [J]. Geology, 2009, 37(7): 591-594. doi: 10.1130/G25667A.1

    CrossRef Google Scholar

    [48] Zhao M X, Huang C Y, Wang C C, et al. A millennial-scale U37K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2): 39-55. doi: 10.1016/j.palaeo.2005.11.033

    CrossRef Google Scholar

    [49] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP [J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947

    CrossRef Google Scholar

    [50] Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2005, 20(3): PA3013.

    Google Scholar

    [51] Massana R, Murray A E, Preston C M, et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel [J]. Applied and Environmental Microbiology, 1997, 63(1): 50-56. doi: 10.1128/AEM.63.1.50-56.1997

    CrossRef Google Scholar

    [52] Zhang C Y, Hu C M, Shang S L, et al. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China [J]. Remote Sensing of Environment, 2006, 102(3-4): 250-263. doi: 10.1016/j.rse.2006.02.015

    CrossRef Google Scholar

    [53] Yamamoto M, Shimamoto A, Fukuhara T, et al. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific [J]. Organic Geochemistry, 2012, 53: 52-62.

    Google Scholar

    [54] Fallet U, Ullgren J E, Castañeda I S, et al. Contrasting variability in foraminiferal and organic paleotemperature proxies in sedimenting particles of the Mozambique Channel (SW Indian Ocean) [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5834-5848. doi: 10.1016/j.gca.2011.08.009

    CrossRef Google Scholar

    [55] Wuchter C, Schouten S, Wakeham S G, et al. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4208.

    Google Scholar

    [56] Zhang Y G, Liu X Q. Export depth of the TEX86 signal [J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 666-671. doi: 10.1029/2018PA003337

    CrossRef Google Scholar

    [57] Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006

    CrossRef Google Scholar

    [58] Thompson P R. Planktonic foraminifera in the Western North Pacific during the past 150 000 years: Comparison of modern and fossil assemblages [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 241-279. doi: 10.1016/0031-0182(81)90099-7

    CrossRef Google Scholar

    [59] Kienast M, Steinke S, Stattegger K, et al. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation [J]. Science, 2001, 291(5511): 2132-2134. doi: 10.1126/science.1057131

    CrossRef Google Scholar

    [60] Bard E, Rostek F, Sonzogni C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry [J]. Nature, 1997, 385(6618): 707-710. doi: 10.1038/385707a0

    CrossRef Google Scholar

    [61] Bond G C, Lotti R. Iceberg discharges into the north atlantic on millennial time scales during the last glaciation [J]. Science, 1995, 267(5200): 1005-1010.

    Google Scholar

    [62] Bond G C, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period [J]. Nature, 1992, 360(6401): 245-249. doi: 10.1038/360245a0

    CrossRef Google Scholar

    [63] Zhang R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation [J]. Journal of Climate, 2005, 18(12): 1853-1860. doi: 10.1175/JCLI3460.1

    CrossRef Google Scholar

    [64] Claussen M, Ganopolski A, Brovkin V, et al. Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events [J]. Climate Dynamics, 2003, 21(5-6): 361-370. doi: 10.1007/s00382-003-0336-2

    CrossRef Google Scholar

    [65] Leuschner D C, Sirocko F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events [J]. Quaternary Science Reviews, 2000, 19(1-5): 243-254.

    Google Scholar

    [66] Schulz H, Von Rad U, Erlenkeuser H, et al. Correlation between Arabian Sea and Greenland climate oscillations of the past 110, 000 years [J]. Nature, 1998, 393(6680): 54-57. doi: 10.1038/31750

    CrossRef Google Scholar

    [67] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(3034) PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint