2020 Vol. 40, No. 3
Article Contents

ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, LIU Xufeng, ZHOU Xingui. Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2019122301
Citation: ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, LIU Xufeng, ZHOU Xingui. Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2019122301

Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances

  • Marine and continental alternative shale of Upper Paleozoic is important as a source rock in southern North China Basin. In this paper, twenty-eight mudstone and silty mudstone samples collected from Upper Paleozoic Benxi, Taiyuan, Shanxi and Xiashihezi Formations on Taikang Uplift, southern North China Basin were analyzed for REEs and trace elements, by means of ICP-MS and XRF to investigate the characteristics of paleoenvironment and their effect on the enrichment of organic matters. The result shows that mudstone in Taiyuan and Shanxi Formations, especially the latter, has similar features of obvious Eu-anomalies and weak Ce-anomalies, higher total REE contents and higher fractionation between LREE and HREE compared with samples from the Benxi and Xiashihezi Formations. The Ce abnormity, which can be used to reveal redox of lake water, shows that the studied samples are mainly formed in a hypoxic reducing environment. Vertical distribution of ΣREE and TOC suggests a change of climate from cold-arid to warm-humid, and a variation of sedimentation rate of mudstone from high to low to high. Among the four studied Formations, the Taiyuan Formation is the one with a stable sedimentary environment of deep water and low sedimentation rate, which benefits the accumulation and preservation of organic matters.

  • 加载中
  • [1] 陈新军, 胡宗全, 李淑筠. 华北南部地区上古生界晚期生烃潜力研究[J]. 天然气地球科学, 2011, 22(4):610-617

    Google Scholar

    CHEN Xinjun, HU Zongquan, LI Shuyun. Later hydrocarbon generation potential of upper Paleozoic source rock in southern North China [J]. Natural Gas Geoscience, 2011, 22(4): 610-617.

    Google Scholar

    [2] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA) [J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029

    CrossRef Google Scholar

    [3] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [4] 龚晓峰, 何家雄, 吴从康, 等. 中国非常规天然气资源的基本地质地球化学特征及特点[J]. 海洋地质与第四纪地质, 2014, 34(5):95-105

    Google Scholar

    GONG Xiaofeng, HE Jiaxiong, WU Congkang, et al. Basic geological and geochemical background of unconventional gas resources in China [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 95-105.

    Google Scholar

    [5] 郑德顺, 刘思聪, 徐江红, 等. 豫西南淅川地区灯影组白云岩地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质, 2018, 38(4):112-122

    Google Scholar

    ZHENG Deshun, LIU Sicong, XU Jianghong, et al. Geochemistry of the dolomite from Dengying Formation in Xichuan, southwest Henan Province: Implications for paleoenvironment [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 112-122.

    Google Scholar

    [6] 赵重远, 刘池洋. 华北克拉通沉积盆地形成与演化及其油气赋存[M]. 西安: 西北大学出版社, 1990: 45-46.

    Google Scholar

    ZHAO Chongyuan, LIU Chiyang. Formation, Evolution and Hydrocarbon Occurrence of Sedimentary Basins in North China Craton[M]. Xi’an: Northwest University Press, 1990: 45-46.

    Google Scholar

    [7] 张交东, 曾秋楠, 周新桂, 等. 南华北盆地太康隆起西部新区上古生界天然气成藏条件与钻探发现[J]. 天然气地球科学, 2017, 28(11):1637-1649

    Google Scholar

    ZHANG Jiaodong, ZENG Qiunan, ZHOU Xingui, et al. Drilling achievements and gas accumulation in the Upper Paleozoic in western new area of Taikang Uplift, southern North China Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1637-1649.

    Google Scholar

    [8] 徐汉林, 赵宗举, 吕福亮, 等. 南华北地区的构造演化与含油气性[J]. 大地构造与成矿学, 2004, 28(4):450-463 doi: 10.3969/j.issn.1001-1552.2004.04.012

    CrossRef Google Scholar

    XU Hanlin, ZHAO Zongju, LV Fuliang, et al. Tectonic evolution of the Nanhuabei Area and analysis about its petroleum potential [J]. Geotectonica et Metallogenia, 2004, 28(4): 450-463. doi: 10.3969/j.issn.1001-1552.2004.04.012

    CrossRef Google Scholar

    [9] 曾秋楠, 张交东, 于炳松, 等. 太康隆起上古生界海陆交互相页岩气地质条件分析[J]. 特种油气藏, 2019, 26(3):49-55 doi: 10.3969/j.issn.1006-6535.2019.03.009

    CrossRef Google Scholar

    ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, et al. Shale gas geology analysis of the Upper Paleozoic marine-continental interaction facies in Taikang Uplift [J]. Special Oil & Gas Reservoirs, 2019, 26(3): 49-55. doi: 10.3969/j.issn.1006-6535.2019.03.009

    CrossRef Google Scholar

    [10] 陈亮, 刘春莲, 庄畅, 等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报, 2009, 27(6):1155-1162

    Google Scholar

    CHEN Liang, LIU Chunlian, ZHUANG Chang, et al. Rare earth element records of the lower paleogene sediments in the Sanshui Basin and their paleoclimate implications [J]. Acta Sedimentologica Sinica, 2009, 27(6): 1155-1162.

    Google Scholar

    [11] Boynton W V. Cosmochemistry of the rare earth elements[M]//Henderson P. Rare earth Element Geochemistry. Amsterdam: Elsevier, 1984: 64-114.

    Google Scholar

    [12] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]//Ahrens L H. Origin and Distribution of the Elements. New York: Pergamon Press, 1968: 889-912.

    Google Scholar

    [13] McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    Google Scholar

    [14] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    CrossRef Google Scholar

    [15] 王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 272-273.

    Google Scholar

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989: 272-273.

    Google Scholar

    [16] Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments [J]. Earth and Planetary Science Letters, 1987, 82(3-4): 280-288. doi: 10.1016/0012-821X(87)90202-0

    CrossRef Google Scholar

    [17] 袁伟, 柳广弟, 罗文斌. 鄂尔多斯盆地延长组长7段沉积速率及其对烃源岩有机质丰度的影响[J]. 西安石油大学学报: 自然科学版, 2016, 31(5):20-26

    Google Scholar

    YUAN Wei, LIU Guangdi, LUO Wenbin. Deposition rate of the seventh member of yangchang formation, ordos basin and its impact on organic matter abundance of hydrocarbon source rock [J]. Journal of Xi’an Shiyou University: Natural Science, 2016, 31(5): 20-26.

    Google Scholar

    [18] Taylor S R, McLennan S M. The continental crust: its composition and evolution [J]. Oxford: Blackwell, 1985: 312.

    Google Scholar

    [19] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control [J]. Sedimentary Geology, 1985, 45(1-2): 97-113. doi: 10.1016/0037-0738(85)90025-9

    CrossRef Google Scholar

    [20] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Boulder, Colorado: Geological Society of America, 1993: 21-40, doi: 10.1130/SPE284-p21.

    Google Scholar

    [21] Taylor S R, Rudnick R L, McLennan S M, et al. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance [J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2267-2279. doi: 10.1016/0016-7037(86)90081-5

    CrossRef Google Scholar

    [22] Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E

    CrossRef Google Scholar

    [23] 李树霞, 向芳, 张瑶, 等. 鄂尔多斯盆地南缘晚古生代沉积物源及其对秦岭造山带北部演化的指示[J]. 成都理工大学学报: 自然科学版, 2017, 44(5):589-601

    Google Scholar

    LI Shuxia, XIANG Fang, ZHANG Yao, et al. Provenance analysis of the late Paleozoic sediments in south margin of the Ordos Basin and its indication to evolution of the north of Qinling Orogenic Belt in China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(5): 589-601.

    Google Scholar

    [24] 史基安, 郭雪莲, 王琪, 等. 青海湖QH1孔晚全新世沉积物稀土元素地球化学与气候环境关系探讨[J]. 湖泊科学, 2003, 15(1):28-34 doi: 10.3321/j.issn:1003-5427.2003.01.004

    CrossRef Google Scholar

    SHI Ji’an, GUO Xuelian, WANG Qi, et al. Geochemistry of REE in QH1 sediments of Qinghai lake since late holocene and its paleoclimatic significance [J]. Journal of Lake Science, 2003, 15(1): 28-34. doi: 10.3321/j.issn:1003-5427.2003.01.004

    CrossRef Google Scholar

    [25] 黄麒, 孟昭强. 干寒地区古气候变化特征之研究I. 古气候波动模式的有机地球化学方法[J]. 海洋与湖沼, 1991, 22(6):547-552

    Google Scholar

    HUANG Qi, MENG Zhaoqiang. Study on features of evolution of Palaeolimate in arid and cold region I. Organic geochemistry method for modelling palaeoclimatic fluctuation [J]. Oceanologia et Limnologia Sinica, 1991, 22(6): 547-552.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(2494) PDF downloads(56) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint