2020 Vol. 40, No. 4
Article Contents

WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. doi: 10.16562/j.cnki.0256-1492.2019110701
Citation: WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. doi: 10.16562/j.cnki.0256-1492.2019110701

Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors

  • The growth rate of polymetallic crust varies in different growing areas and layers, constrained by some marine factors. In this paper, the polymetallic crust growth rate and its variation with growth region, age and structures are studied, in addition to the relationship between growth discontinuity and growth rate change. It is found that from east to west of the study area, i.e. from the Line Seamounts to Magellan Seamounts, the growth rate of polymetallic crusts decreases as the crusts change from dense to loose to sub-dense in layers, from old to young in ages and from high to low in topography. The areas below OMZ, where it is strong in oxidability, abundant in terrigenous materials supply and high in dissolution rate of calcium carbonate, are the areas favorable to the growth of crusts. Hiatus of crusts corresponding to three types of growth rate changes are observed in the study area: a) before the growth rate turned from low to high, which mainly corresponds to the hiatus of 65~60 Ma, the hydrodynamic condition of the environment is not good enough to crust growth, so the crust stopped growing and the crust could only resume growing when conditions were improved. b) when the climate warmed up and the supply of continental-derived wind dust remain low, the growth rate of crust would drop from high, which mainly corresponds to the two hiatuses during 51~42 Ma and 40~35 Ma. The crusts stopped growing when the environment became severe, and could only resume growing when it was slightly getting better. c) the growth rate remained low, which corresponded to the hiatus of 28-18 Ma, while the dissolution rate of CaCO3 in the ocean was low. The crusts grew intermittently if the growth environment remained poor.

  • 加载中
  • [1] Cowen J P, De Carlo E H, McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115(3-4): 289-306. doi: 10.1016/0025-3227(93)90057-3

    CrossRef Google Scholar

    [2] Chabaux F, Unions R K, Cohen A S, et al. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration? [J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3619-3632. doi: 10.1016/S0016-7037(97)00187-7

    CrossRef Google Scholar

    [3] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016

    CrossRef Google Scholar

    [4] 李江山, 方念乔, 屈文俊, 等. 中太平洋富钴结壳的Os同位素定年与结壳生长间断[J]. 中国科学D辑: 地球科学, 2008, 51(10):1452-1459 doi: 10.1007/s11430-008-0100-x

    CrossRef Google Scholar

    LI Jiangshan, FANG Nianqiao, QU Wenjun, et al. Os Isotope dating and growth hiatuses of Co-rich crust from central Pacific [J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1452-1459. doi: 10.1007/s11430-008-0100-x

    CrossRef Google Scholar

    [5] Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications [J]. Paleoceanography, 1992, 7(1): 63-77. doi: 10.1029/91PA02936

    CrossRef Google Scholar

    [6] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from Central Pacific Seamount areas [J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0

    CrossRef Google Scholar

    [7] 栾锡武. 大洋富钴结壳成因机制的探讨——水成因证据[J]. 海洋学研究, 2006, 24(2):8-19 doi: 10.3969/j.issn.1001-909X.2006.02.002

    CrossRef Google Scholar

    LUAN Xiwu. Cobalt-rich ferromanganese crusts formation—Evidences of hydrogenous origin [J]. Journal of Marine Sciences, 2006, 24(2): 8-19. doi: 10.3969/j.issn.1001-909X.2006.02.002

    CrossRef Google Scholar

    [8] 朱克超, 赵祖斌, 李扬. 麦哲伦海山区MD、ME、MF海山富钴结壳特征[J]. 海洋地质与第四纪地质, 2001, 21(1):33-38

    Google Scholar

    ZHU Kechao, ZHAO Zubin, LI Yang. Cobalt-rich ferromanganese crusts from the MA, ME, and MF seamounts of the Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 33-38.

    Google Scholar

    [9] Segl M, Mangini A, Banani G, et al. 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation [J]. Nature, 1984, 309(5968): 540-543. doi: 10.1038/309540a0

    CrossRef Google Scholar

    [10] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific Seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5

    CrossRef Google Scholar

    [11] 潘家华, DeCarlo E, 刘淑琴, 等. 西太平洋富钴结壳生长与富集特征[J]. 地质学报, 2005, 79(1):124-132 doi: 10.3321/j.issn:0001-5717.2005.01.014

    CrossRef Google Scholar

    PAN Jiahua, DeCarlo E, LIU Shuqin, et al. Growth and enrichment characteristics of Co-rich crusts in the Western Pacific [J]. Acta Geologica Sinica, 2005, 79(1): 124-132. doi: 10.3321/j.issn:0001-5717.2005.01.014

    CrossRef Google Scholar

    [12] Eisenhauer A, Gögen K, Pernicka E, et al. Climatic influences on the growth rates of Mn crusts during the Late Quaternary [J]. Earth and Planetary Science Letters, 1992, 109(1-2): 25-36. doi: 10.1016/0012-821X(92)90071-3

    CrossRef Google Scholar

    [13] Mangini A, Segl M, Glasby G P, et al. Element accumulation rates in and growth histories of manganese nodules from the southwestern Pacific basin [J]. Marine Geology, 1990, 94(1-2): 97-107. doi: 10.1016/0025-3227(90)90105-S

    CrossRef Google Scholar

    [14] Von Blanckenburg F, O’Nions R K, Hein J R. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe–Mn crusts [J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 4957-4963. doi: 10.1016/S0016-7037(96)00310-9

    CrossRef Google Scholar

    [15] Banakar V K, Pattan J N, Mudholkar A V. Palaeoceanographic conditions during the formation of a ferromanganese crust from the Afanasiy-Nikitin seamount, North Central Indian Ocean: geochemical evidence [J]. Marine Geology, 1997, 136(3-4): 299-315. doi: 10.1016/S0025-3227(96)00065-5

    CrossRef Google Scholar

    [16] Banakar V K, Hein J R. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean [J]. Marine Geology, 2000, 162(2-4): 529-540. doi: 10.1016/S0025-3227(99)00077-8

    CrossRef Google Scholar

    [17] Frank M, O’Nions R K. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion? [J]. Earth and Planetary Science Letters, 1998, 158(3-4): 121-130. doi: 10.1016/S0012-821X(98)00055-7

    CrossRef Google Scholar

    [18] 潘家华, 张静, 刘淑琴, 等. 西北太平洋富钴结壳的钙质超微化石地层学研究及意义[J]. 地球学报, 2007, 28(5):411-417 doi: 10.3321/j.issn:1006-3021.2007.05.001

    CrossRef Google Scholar

    PAN Jiahua, ZHANG Jing, LIU Shuqin, et al. Calcareous nannofossil biostratigraphy of Co-rich crusts from Northwestern Pacific and its significance [J]. Acta Geoscientica Sinica, 2007, 28(5): 411-417. doi: 10.3321/j.issn:1006-3021.2007.05.001

    CrossRef Google Scholar

    [19] Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific- testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24. doi: 10.1016/j.oregeorev.2016.07.018

    CrossRef Google Scholar

    [20] Puteanus D, Halbach P. Correlation of Co concentration and growth rate-A method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3

    CrossRef Google Scholar

    [21] 初凤友, 胡大千, 姚杰. 中太平洋YJC海山富钴结壳矿物组成与元素地球化学[J]. 世界地质, 2006, 25(3):245-253 doi: 10.3969/j.issn.1004-5589.2006.03.005

    CrossRef Google Scholar

    CHU Fengyou, HU Daqian, YAO Jie. Mineral composition and element geochemistry of Co-rich crust from the YJC sea mount in the Central Pacific Ocean [J]. Global Geology, 2006, 25(3): 245-253. doi: 10.3969/j.issn.1004-5589.2006.03.005

    CrossRef Google Scholar

    [22] 李江山, 方念乔, 丁旋, 等. 富钴结壳显微构造与元素含量: 基于中太平洋MHD79样品的研究[J]. 现代地质, 2007, 21(3):518-523 doi: 10.3969/j.issn.1000-8527.2007.03.013

    CrossRef Google Scholar

    LI Jiangshan, FANG Nianqiao, DING Xuan, et al. Microstructure and element abundance of Co-rich crust: Evidences from the layered sample MHD79 collected from the Central Pacific [J]. Geoscience, 2007, 21(3): 518-523. doi: 10.3969/j.issn.1000-8527.2007.03.013

    CrossRef Google Scholar

    [23] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    CrossRef Google Scholar

    [24] McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7

    CrossRef Google Scholar

    [25] Frank M, O’Nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1689-1708. doi: 10.1016/S0016-7037(99)00079-4

    CrossRef Google Scholar

    [26] Du A D, Wu S Q, Sun D Z, et al. Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC [J]. Geostandards and Geoanalytical Research, 2004, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x

    CrossRef Google Scholar

    [27] 符亚洲. 中太平洋莱恩海山富钴结壳的地球化学及Os同位素地层年代学研究[D]. 中国科学院地球化学研究所博士学位论文, 2006: 89-92.

    Google Scholar

    FU Yazhou. Geochemistry and Os isotopic geochronology of cobalt rich crusts in the Line seamount, Central Pacific Ocean[D]. Doctor Dissertation of Institute of geochemistry, Chinese Academy of Sciences, 2006: 89-92.

    Google Scholar

    [28] Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2

    CrossRef Google Scholar

    [29] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9

    CrossRef Google Scholar

    [30] 李江山. 中、西太平洋富钴结壳地球化学及古海洋环境[D]. 中国地质大学, 2007: 20-28.

    Google Scholar

    LI Jiangshan. Geochemistry and paleoceanic environment of cobalt rich crusts in the central and western Pacific[D]. China University of Geosciences, 2007: 20-28.

    Google Scholar

    [31] 张志超. 中西太平洋富钴结壳Os同位素年代学研究及古海洋学意义[D]. 中国地质大学硕士学位论文, 2014: 11-13.

    Google Scholar

    ZHANG Zhichao. Geochronology of cobalt rich crusts in the central and western Pacific and its paleoceanographic significance[D]. Master Dissertation of China University of Geosciences, 2014: 11-13.

    Google Scholar

    [32] Halbach P, Giovanoli R, von Borstel D. Geochemical processes controlling the relationship between Co, Mn, and Fe in early diagenetic deep-sea nodules [J]. Earth and Planetary Science Letters, 1982, 60(2): 226-236. doi: 10.1016/0012-821X(82)90005-X

    CrossRef Google Scholar

    [33] Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682. doi: 10.1038/ngeo964

    CrossRef Google Scholar

    [34] Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577

    CrossRef Google Scholar

    [35] Bressac M, Guieu C, Ellwood M J, et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition [J]. Nature Geoscience, 2019, 12(12): 995-1000. doi: 10.1038/s41561-019-0476-6

    CrossRef Google Scholar

    [36] Ostrander C M, Nielsen S G, Owens J D, et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event [J]. Nature Geoscience, 2019, 12(3): 186-191. doi: 10.1038/s41561-019-0309-7

    CrossRef Google Scholar

    [37] Aplin A C, Cronan D S. Ferromanganese oxide deposits from the central Pacific Ocean. I. Encrustations from the Line Islands Archipelago [J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 427-436. doi: 10.1016/0016-7037(85)90034-1

    CrossRef Google Scholar

    [38] Robbins L J, Funk S P, Flynn S L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations [J]. Nature Geoscience, 2019, 12(7): 558-563. doi: 10.1038/s41561-019-0372-0

    CrossRef Google Scholar

    [39] De Carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean [J]. Marine Geology, 1991, 98(2-4): 449-467. doi: 10.1016/0025-3227(91)90116-L

    CrossRef Google Scholar

    [40] 许东禹. 太平洋古海洋事件和成矿作用[C]//第30届国际地质大会论文集, 第13卷, 海洋地质学, 古海洋学. 北京: 地质出版社, 1999: 101-113.

    Google Scholar

    XU Dongyu. Paleooceanic events and mineralization in the Pacific Ocean[C]//Proceedings of the 30th International Geological Congress, Volume 13, Marine Geology and Paleoceanography. Beijing: Geological Publishing House, 1999: 101-113.

    Google Scholar

    [41] Siesser W G. Paleoproductivity of the Indian Ocean during the Tertiary period [J]. Global and Planetary Change, 1995, 11(1-2): 71-88. doi: 10.1016/0921-8181(95)00003-A

    CrossRef Google Scholar

    [42] Roden G I. Effects of the Fieberling seamount group upon flow and thermohaline structure in the spring of 1991 [J]. Journal of Geophysical Research, 1994, 99(C5): 9941-9961. doi: 10.1029/94JC00057

    CrossRef Google Scholar

    [43] Pautot G, Melguen M. Deep bottom currents, sedimentary hiatuses and polymetallic nodules [J]. Technical Bulletin, 1976, 2: 54-61.

    Google Scholar

    [44] 张振国. 南海北部陆缘多金属结核地球化学特征及成矿意义[D]. 中国地质大学博士学位论文, 2007: 98-102.

    Google Scholar

    ZHANG Zhenguo. Approach to geochemical characteristics and minerogenetic environment of polymetallic nodules from the northern continental margin of the South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2007: 98-102.

    Google Scholar

    [45] 吴长航. 南海北部陆缘大型多金属结核的生长及元素地球化学特征研究[D]. 中国地质大学博士学位论文, 2009: 63-117.

    Google Scholar

    WU Changhang. Research on the growth and elemental geochemical characteristics of large-scale polymetallic nodules from the Northern continental margin of the South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2009: 63-117.

    Google Scholar

    [46] 佟景贵. 太平洋富钴结壳矿物地球化学及古海洋与古环境重建[D]. 中国地质大学博士学位论文, 2007: 6-13.

    Google Scholar

    TONG Jingguo. Geochemical and mineralogical study on the Co-rich ferromanganese crust from the Pacific ocean and the palaeoocean and palaeoenvironment reconstruction[D]. Doctor Dissertation of China University of Geosciences, 2007: 6-13.

    Google Scholar

    [47] Leinen M, Heath G R. Sedimentary indicators of atmospheric activity in the northern hemisphere during the Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 36(1-2): 1-21. doi: 10.1016/0031-0182(81)90046-8

    CrossRef Google Scholar

    [48] 丁旋, 高莲凤, 方念乔, 等. 太平洋海山富钴结壳生长过程与新生代海洋演化关系[J]. 中国科学D辑: 地球科学, 2009, 52(8):1091-1103 doi: 10.1007/s11430-009-0106-z

    CrossRef Google Scholar

    DING Xuan, GAO Lianfeng, FANG Nianqiao, et al. The relationship between the growth process of the ferromanganese crusts in the Pacific seamount and Cenozoic ocean evolvement [J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1091-1103. doi: 10.1007/s11430-009-0106-z

    CrossRef Google Scholar

    [49] Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events [J]. Paleoceanography, 1989, 4(5): 511-530. doi: 10.1029/PA004i005p00511

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1816) PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint