2020 Vol. 40, No. 4
Article Contents

FU Mengxuan, YU Shiyong, WU Jinjia, CHEN Shiyue, HOU Zhanfang, ZHOU Ruiwen, LI Zheng, WEI Benjie. Mid-to-Late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 192-203. doi: 10.16562/j.cnki.0256-1492.2019110602
Citation: FU Mengxuan, YU Shiyong, WU Jinjia, CHEN Shiyue, HOU Zhanfang, ZHOU Ruiwen, LI Zheng, WEI Benjie. Mid-to-Late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 192-203. doi: 10.16562/j.cnki.0256-1492.2019110602

Mid-to-Late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments

More Information
  • The Gaotai Lake is located on the southern margin of the Badain Jaran Desert. Under the influence of Asia monsoon and westerlies, there preserve reliable records of climatic changes for the Asia’s interior during the Mid-to-Late Holocene. Based on OSL dating and high-resolution multi-proxy records such as carbonate content, color, grain-size end-member (EM) modeling, it is inferred that the lake has experienced four distinct phases of climatic changes during the period from Mid-to-Late Holocene. Our results suggest that it used to be a shallow lake or nearshore environment during 7.1~5.3 ka, under a relatively dry climate condition. During the period of 5.3~1.2 ka, the lake was expanded and reached its highest level. Also, the records of carbonate content and a* and b* indices indicate that precipitation was increased and erosion intensified, representing the wettest period during the time of Mid-to-Late Holocene. In the period of 1.2~0.2 ka, the region changed back to a shallow lake or nearhore environment, and the climate turned to dry again. After 0.2 ka, the lake disappeared and the place is predominated by modern sand dunes under a drier climate. Regional proxy records show that the evolution of the Gaotai Lake is consistent and comparable with the lake records in arid Central Asia, where the climate is mainly affected by the westerlies and the high-latitude North Atlantic Ocean.

  • 加载中
  • [1] Kaufman D S, Axford Y L, Henderson A C G, et al. Holocene climate changes in Eastern Beringia (NW North America)-A systematic review of multi-proxy evidence [J]. Quaternary Science Reviews, 2016, 147: 312-339. doi: 10.1016/j.quascirev.2015.10.021

    CrossRef Google Scholar

    [2] Zhang J W, Chen F H, Holmes J A, et al. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis [J]. Quaternary Science Reviews, 2011, 30(15-16): 1973-1987. doi: 10.1016/j.quascirev.2011.04.023

    CrossRef Google Scholar

    [3] Zhang H C, Ma Y Z, Wünnemann B, et al. A Holocene climatic record from arid northwestern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3-4): 389-401. doi: 10.1016/S0031-0182(00)00139-5

    CrossRef Google Scholar

    [4] Zhang R P, Liang T G, Guo J, et al. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014 [J]. Scientific Reports, 2018, 8: 2888. doi: 10.1038/s41598-018-21089-3

    CrossRef Google Scholar

    [5] Lu R J, Jia F F, Gao S Y, et al. Holocene Aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai-Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 1-10. doi: 10.1016/j.palaeo.2015.03.044

    CrossRef Google Scholar

    [6] Liu B, Jin H L, Sun L Y, et al. Geochemical evidence for Holocene millennial-scale climatic and environmental changes in the south-eastern Mu Us Desert, northern China [J]. International Journal of Earth Sciences, 2015, 104(7): 1889-1900. doi: 10.1007/s00531-015-1161-7

    CrossRef Google Scholar

    [7] 王洪波. 半干旱地区历史时期沙漠化成因研究进展[J]. 干旱区资源与环境, 2015, 29(5):69-74

    Google Scholar

    WANG Hongbo. Collision and integration-an overview of desertification in semiarid area during the historical period [J]. Journal of Arid Land Resources and Environment, 2015, 29(5): 69-74.

    Google Scholar

    [8] 张文丽. 粒度和磁化率反映的中晚全新世以来玛曲高原的沙漠化演化[D]. 西北师范大学硕士学位论文, 2015.

    Google Scholar

    ZHANG Wenli. The desertification evolution reflected by Grain-size and Magnatic susceptibility in Maqu plateau since Middle-late Holocene[D]. Master Dissertation of Northwest Normal University, 2015.

    Google Scholar

    [9] 鹿化煜, 郭正堂. 末次盛冰期以来气候变化和人类活动对我国沙漠和沙地环境的影响[J]. 中国基础科学, 2015(2):3-8 doi: 10.3969/j.issn.1009-2412.2015.02.001

    CrossRef Google Scholar

    LU Huayu, GUO Zhengtang. Impact of climatic change and human activity on desert and sand field in northern China since the last glacial maximum [J]. China Basic Science, 2015(2): 3-8. doi: 10.3969/j.issn.1009-2412.2015.02.001

    CrossRef Google Scholar

    [10] 杨利荣, 岳乐平. 光释光测年揭示的科尔沁沙地末次晚冰期-全新世沙漠空间格局变化[J]. 第四纪研究, 2013, 33(2):260-268 doi: 10.3969/j.issn.1001-7410.2013.02.07

    CrossRef Google Scholar

    YANG Lirong, YUE Leping. Horqin Dunefield in northeastern China in the Last Late Glacial and Holocene as revealed by OSL dating [J]. Quaternary Sciences, 2013, 33(2): 260-268. doi: 10.3969/j.issn.1001-7410.2013.02.07

    CrossRef Google Scholar

    [11] 刘冰, 靳鹤龄, 孙忠. 中晚全新世科尔沁沙地演化与气候变化[J]. 中国沙漠, 2013, 33(1):77-86 doi: 10.7522/j.issn.1000-694X.2013.00011

    CrossRef Google Scholar

    LIU Bing, JIN Heling, SUN Zhong. Desert evolution and climate change in the Horqin Sandy Land in Middle and Late Holocene [J]. Journal of Desert Research, 2013, 33(1): 77-86. doi: 10.7522/j.issn.1000-694X.2013.00011

    CrossRef Google Scholar

    [12] 尚可政, 董光荣, 王式功, 等. 我国北方沙区气候变化对全球变暖的响应[J]. 中国沙漠, 2001, 21(4):387-392 doi: 10.3321/j.issn:1000-694X.2001.04.012

    CrossRef Google Scholar

    SHANG Kezheng, DONG Guangrong, WANG Shigong, et al. Response of climatic change in north China deserted region to the warming of the earth [J]. Journal of Desert Research, 2001, 21(4): 387-392. doi: 10.3321/j.issn:1000-694X.2001.04.012

    CrossRef Google Scholar

    [13] Yu G, Xue B, Wang S M, et al. Lake records and LGM climate in China [J]. Chinese Science Bulletin, 2000, 45(13): 1158-1164. doi: 10.1007/BF02886069

    CrossRef Google Scholar

    [14] 陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式——以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6):881-887 doi: 10.3321/j.issn:1001-7410.2006.06.001

    CrossRef Google Scholar

    CHEN Fahu, HUANG Xiaozhong, YANG Meilin, et al. Westerly dominated Holocene climate model in arid central Asia—Case study on Bosten Lake, Xinjiang, China [J]. Quaternary Sciences, 2006, 26(6): 881-887. doi: 10.3321/j.issn:1001-7410.2006.06.001

    CrossRef Google Scholar

    [15] Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history [J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017

    CrossRef Google Scholar

    [16] 陈发虎, 陈建徽, 黄伟. 中纬度亚洲现代间冰期气候变化的“西风模式”讨论[J]. 地学前缘, 2009, 16(6):23-32 doi: 10.3321/j.issn:1005-2321.2009.06.003

    CrossRef Google Scholar

    CHEN Fahu, CHEN Jianhui, HUANG Wei. A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period [J]. Earth Science Frontiers, 2009, 16(6): 23-32. doi: 10.3321/j.issn:1005-2321.2009.06.003

    CrossRef Google Scholar

    [17] Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms [J]. Quaternary Science Reviews, 2015, 107: 98-111. doi: 10.1016/j.quascirev.2014.10.012

    CrossRef Google Scholar

    [18] Huang X T, Oberhänsli H, von Suchodoletz H, et al. Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul [J]. Quaternary Science Reviews, 2014, 103: 134-152. doi: 10.1016/j.quascirev.2014.09.012

    CrossRef Google Scholar

    [19] Wang N A, Ning K, Li Z L, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert [J]. Science China Earth Sciences, 2016, 59(8): 1633-1641. doi: 10.1007/s11430-016-5307-7

    CrossRef Google Scholar

    [20] 李育, 张成琦, 周雪花, 等. 我国西北夏季风边界千年尺度变化的证据——来自盐池和猪野泽盐类矿物分析结果[J]. 沉积学报, 2015, 33(3):524-536

    Google Scholar

    LI Yu, ZHANG Chengqi, ZHOU Xuehua, et al. An evidence of millennial-scale summer monsoon boundary change in the Northwest China—analysis results from saline minerals in lake sediments of Yanchi Lake and Zhuye Lake [J]. Acta Sedimentologica Sinica, 2015, 33(3): 524-536.

    Google Scholar

    [21] 李育, 王乃昂, 李卓仑, 等. 河西走廊盐池晚冰期以来沉积地层变化综合分析——来自夏季风西北缘一个关键位置的古气候证据[J]. 地理学报, 2013, 68(7):933-944

    Google Scholar

    LI Yu, WANG Naiang, LI Zhuolun, et al. Comprehensive analysis of lake sediments in Yanchi Lake of Hexi Corridor since the late glacial [J]. Acta Geographica Sinica, 2013, 68(7): 933-944.

    Google Scholar

    [22] Yu S Y, Cheng P, Hou Z F. A caveat on radiocarbon dating of organic-poor bulk lacustrine sediments in arid China [J]. Radiocarbon, 2014, 56(1): 127-141. doi: 10.2458/56.16922

    CrossRef Google Scholar

    [23] Wintle A G. Luminescence dating: laboratory procedures and protocols [J]. Radiation Measurements, 1997, 27(5-6): 769-817. doi: 10.1016/S1350-4487(97)00220-5

    CrossRef Google Scholar

    [24] Lu Y C, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130, 000 yr for the Chinese Loess Plateau [J]. Quaternary Research, 2007, 67(1): 152-160. doi: 10.1016/j.yqres.2006.08.003

    CrossRef Google Scholar

    [25] 杨铭, 王松娜, 康树刚, 等. 河南三杨庄剖面光释光年代学研究[J]. 地球环境学报, 2018, 9(6):580-588

    Google Scholar

    YANG Ming, WANG Songna, KANG Shugang, et al. Optically stimulated luminescence dating of Sanyangzhuang profile, Henan Province [J]. Journal of Earth Environment, 2018, 9(6): 580-588.

    Google Scholar

    [26] 杨波, 刘兴起, 王永波. 湖泊沉积物碳酸盐含量的XRD半定量分析[J]. 湖泊科学, 2014, 26(4):637-640 doi: 10.18307/2014.0420

    CrossRef Google Scholar

    YANG Bo, LIU Xingqi, WANG Yongbo. Carbonate contents of lake sediments determined by XRD method [J]. Journal of Lake Sciences, 2014, 26(4): 637-640. doi: 10.18307/2014.0420

    CrossRef Google Scholar

    [27] Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions [J]. Mathematical Geosciences, 2016, 48(6): 723-741. doi: 10.1007/s11004-015-9611-0

    CrossRef Google Scholar

    [28] Li B, Li S H, Wintle A. Overcoming environmental dose rate changes in luminescence dating of waterlain deposits [J]. Geochronometria, 2008, 30: 33-40. doi: 10.2478/v10003-008-0003-z

    CrossRef Google Scholar

    [29] 张克旗. 释光测年中环境剂量率影响因素研究[J]. 地质力学学报, 2012, 18(1):62-71 doi: 10.3969/j.issn.1006-6616.2012.01.007

    CrossRef Google Scholar

    ZHANG Keqi. Quantitative calculations of environmental dose rate at different influencing factors in luminescence dating [J]. Journal of Geomechanics, 2012, 18(1): 62-71. doi: 10.3969/j.issn.1006-6616.2012.01.007

    CrossRef Google Scholar

    [30] 张克旗, 吴中海, 吕同艳, 等. 光释光测年法——综述及进展[J]. 地质通报, 2015, 34(1):183-203 doi: 10.3969/j.issn.1671-2552.2015.01.015

    CrossRef Google Scholar

    ZHANG Keqi, WU Zhonghai, LÜ Tongyan, et al. Review and progress of OSL dating [J]. Geological Bulletin of China, 2015, 34(1): 183-203. doi: 10.3969/j.issn.1671-2552.2015.01.015

    CrossRef Google Scholar

    [31] Song C H, Hu S H, Han W X, et al. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 67-76. doi: 10.1016/j.palaeo.2013.12.022

    CrossRef Google Scholar

    [32] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components [J]. Sedimentary Geology, 2002, 152(3-4): 263-277. doi: 10.1016/S0037-0738(02)00082-9

    CrossRef Google Scholar

    [33] 蓝江湖, 徐海, 刘斌, 等. 湖泊沉积中碳酸盐、有机质及其同位素的古气候意义[J]. 生态学杂志, 2013, 32(5):1326-1334

    Google Scholar

    LAN Jianghu, XU Hai, LIU Bin, et al. Paleoclimate implications of carbonate, organic matter, and their stable isotopes in lacustrine sediments: A review [J]. Chinese Journal of Ecology, 2013, 32(5): 1326-1334.

    Google Scholar

    [34] 陈忠, 马海州, 曹广超, 等. 尕海地区晚冰期以来沉积记录的气候环境演变[J]. 海洋地质与第四纪地质, 2007, 27(1):131-138

    Google Scholar

    CHEN Zhong, MA Haizhou, CAO Guangchao, et al. Climatic-environmental evolution in Gahai Lake area since the late Glacial period from loss-on-ignition [J]. Marine Geology & Quaternary Geology, 2007, 27(1): 131-138.

    Google Scholar

    [35] Sun Y B, He L, Liang L J, et al. Changing color of Chinese loess: geochemical constraint and paleoclimatic significance [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1131-1138. doi: 10.1016/j.jseaes.2010.08.006

    CrossRef Google Scholar

    [36] 陈宗颜, 陈克龙, 罗正霞. 察尔汗地区130 ka B.P.以来湖相沉积物颜色记录的气候变化探讨[J]. 盐湖研究, 2011, 19(4):1-14

    Google Scholar

    CHEN Zongyan, CHEN Kekong, LUO Zhengxia. Climatic change recorded by the Chroma of lacustrine sediments from 130 ka B.P. in Qarhan Area [J]. Journal of Salt Lake Research, 2011, 19(4): 1-14.

    Google Scholar

    [37] 吴艳宏, 李世杰. 湖泊沉积物色度在短尺度古气候研究中的应用[J]. 地球科学进展, 2004, 19(5):789-792 doi: 10.3321/j.issn:1001-8166.2004.05.016

    CrossRef Google Scholar

    WU Yanhong, LI Shijie. Significance of Lake sediment color for short time scale climate variation [J]. Advance in Earth Science, 2004, 19(5): 789-792. doi: 10.3321/j.issn:1001-8166.2004.05.016

    CrossRef Google Scholar

    [38] 章云霞, 叶玮, 马春梅, 等. 浙江北湖桥孔色度记录的早-中全新世环境变化[J]. 第四纪研究, 2016, 36(5):1331-1342 doi: 10.11928/j.issn.1001-7410.2016.05.26

    CrossRef Google Scholar

    ZHANG Yunxia, YE We, MA Chunmei, et al. Environment variabilities archived by color of the drill core Beihuqiao in Hangjiahu Plain during the Early-Mid Holocene, China [J]. Quaternary Sciences, 2016, 36(5): 1331-1342. doi: 10.11928/j.issn.1001-7410.2016.05.26

    CrossRef Google Scholar

    [39] 孙东怀, 安芷生, 苏瑞侠, 等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 2001, 11(3):269-276 doi: 10.3321/j.issn:1002-008X.2001.03.008

    CrossRef Google Scholar

    SUN Donghuai, AN Zhisheng, SU Ruixia, et al. The mathematical methods and their application to separate sediments in ancient environment [J]. Progress in Natural Science, 2001, 11(3): 269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008

    CrossRef Google Scholar

    [40] 聂军胜, 李曼. 柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义[J]. 第四纪研究, 2017, 37(5):1017-1026 doi: 10.11928/j.issn.1001-7410.2017.05.09

    CrossRef Google Scholar

    NIE Junsheng, LI Man. A grain size study on late Miocene Huaitoutala section, NE Qaidam Basin, and its implications for Asian monsoon evolution [J]. Quaternary Sciences, 2017, 37(5): 1017-1026. doi: 10.11928/j.issn.1001-7410.2017.05.09

    CrossRef Google Scholar

    [41] Dietze E, Maussion F, Ahlborn M, et al. Sediment transport processes across the Tibetan Plateau inferred from robust grain size end-members in lake sediments [J]. Climate of the Past, 2013, 9(4): 4855-4892. doi: 10.5194/cpd-9-4855-2013

    CrossRef Google Scholar

    [42] Sly P G. Sedimentary processes in lakes[M]//Lerman A. Lakes: Chemistry, Geology, Physics. New York: Springer, 1978: 65-89.

    Google Scholar

    [43] Sly P G. Sediment dispersion: part 1, fine sediments and significance of the silt/clay ratio [J]. Hydrobiologia, 1989, 176(1): 99-110.

    Google Scholar

    [44] Chen F H, Wu W, Holmes J A, et al. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China [J]. Chinese Science Bulletin, 2003, 48(14): 1401-1410. doi: 10.1360/03wd0245

    CrossRef Google Scholar

    [45] Sun A Z, Feng Z D. Holocene climatic reconstructions from the fossil pollen record at Qigai Nuur in the southern Mongolian Plateau [J]. The Holocene, 2013, 23(10): 1391-1492. doi: 10.1177/0959683613489581

    CrossRef Google Scholar

    [46] Huang X Z, Chen F H, Fan Y X, et al. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China [J]. Quaternary International, 2009, 194(1-2): 19-27. doi: 10.1016/j.quaint.2007.10.002

    CrossRef Google Scholar

    [47] Long H, Shen J, Tsukamoto S, et al. Dry early Holocene revealed by sand dune accumulation chronology in Bayanbulak Basin (Xinjiang, NW China) [J]. The Holocene, 2014, 24(5): 614-626. doi: 10.1177/0959683614523804

    CrossRef Google Scholar

    [48] Feng Z D, Wang W G, Guo L L, et al. Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau: preliminary results [J]. Quaternary International, 2005, 136(1): 25-32. doi: 10.1016/j.quaint.2004.11.005

    CrossRef Google Scholar

    [49] Fowell S J, Hansen B C S, Peck J A, et al. Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data [J]. Quaternary Research, 2003, 59(3): 353-363. doi: 10.1016/S0033-5894(02)00020-0

    CrossRef Google Scholar

    [50] Yu Y T, Yang T B, Li J J, et al. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(1-2): 149-162. doi: 10.1016/j.palaeo.2005.09.008

    CrossRef Google Scholar

    [51] Tian F, Wang Y, Liu J, et al. Late Holocene climate change inferred from a lacustrine sedimentary sequence in southern Inner Mongolia, China [J]. Quaternary International, 2017, 452: 22-32. doi: 10.1016/j.quaint.2017.01.029

    CrossRef Google Scholar

    [52] 唐晓宏, 钟巍, 尹焕玲. 新疆巴里坤湖9.0 cal.kaBP以来沉积物地球化学元素分布特征与古气候环境演化[J]. 华南师范大学学报: 自然科学版, 2012, 44(2):134-140

    Google Scholar

    TANG Xiaohong, ZHONG Wei, YIN Huanling. Study on the characteristics of the geochemical elements and paleoclimate changes in Lake Barkol, Xinjiang since about 9. 0 cal.kaBP [J]. Journal of South China Normal University: Natural Science Edition, 2012, 44(2): 134-140.

    Google Scholar

    [53] 陶士臣, 安成邦, 陈发虎, 等. 孢粉记录的新疆巴里坤湖16.7 cal.kaBP以来的植被与环境[J]. 科学通报, 2010, 55(22):2449-2457 doi: 10.1007/s11434-010-3174-8

    CrossRef Google Scholar

    TAO Shichen, AN Chengbang, CHEN Fahu, et al. Pollen-inferred vegetation and environmental changes since 16.7 kaBP at Balikun Lake, Xinjiang [J]. Chinese Science Bulletin, 2010, 55(22): 2449-2457. doi: 10.1007/s11434-010-3174-8

    CrossRef Google Scholar

    [54] 靳建辉, 李志忠, 陈秀玲, 等. 新疆伊犁河谷晚全新世风沙沉积主量元素特征及其气候意义[J]. 古地理学报, 2010, 12(6):675-684 doi: 10.7605/gdlxb.2010.06.004

    CrossRef Google Scholar

    JIN Jianhui, LI Zhizhong, CHEN Xiuling, et al. Major elements in Aeolian sediments of the Late Holocene in Yili valley and their climatic implications [J]. Journal of Palaeogeography, 2010, 12(6): 675-684. doi: 10.7605/gdlxb.2010.06.004

    CrossRef Google Scholar

    [55] Feng Z D, Ran M, Yang Q L. Geomorphological and sedimentological precautions in radiocarbon dating of eolian and lacustrine sequences in arid Asia [J]. Quaternary International, 2013, 286: 126-137. doi: 10.1016/j.quaint.2012.08.2051

    CrossRef Google Scholar

    [56] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2): 25-47. doi: 10.1016/0031-0182(95)00032-1

    CrossRef Google Scholar

    [57] 陈天源, 刘斯文, 赖忠平, 等. 巴丹吉林沙漠湖泊年轻沉积物14C测年初步研究[J]. 盐湖研究, 2017, 25(2):60-66

    Google Scholar

    CHEN Tianyuan, LIU Siwen, LAI Zhongping, et al. A preliminary study of AMS 14C dating of young lacustrine sediments in the Badain Jaran Desert [J]. Journal of Salt Lake Research, 2017, 25(2): 60-66.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(2735) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint