2020 Vol. 40, No. 2
Article Contents

LI Shuanglin, DONG Heping, WANG Jianqiang, ZHAO Qingfang. Target geochemical exploration for oil and gas on the south central Laoshan uplift of the South Yellow Sea Basin: seabed oil-gas seepage and double halo-type geochemical anomaly[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 135-147. doi: 10.16562/j.cnki.0256-1492.2019101001
Citation: LI Shuanglin, DONG Heping, WANG Jianqiang, ZHAO Qingfang. Target geochemical exploration for oil and gas on the south central Laoshan uplift of the South Yellow Sea Basin: seabed oil-gas seepage and double halo-type geochemical anomaly[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 135-147. doi: 10.16562/j.cnki.0256-1492.2019101001

Target geochemical exploration for oil and gas on the south central Laoshan uplift of the South Yellow Sea Basin: seabed oil-gas seepage and double halo-type geochemical anomaly

  • Geochemical samples of 163 sites are collected from the south central Laoshan uplift of the South Yellow Sea Basin and analyzed for oil and gas geochemical indices including hydrocarbon gases and aromatic hydrocarbons. From the analysis results, geochemical anomalies are extracted, the relationship of seabed geochemical anomalies with the seepage of oil and gas revealed, and the model of geochemical anomalies established. The geochemical anomalies of adsorbed methane, adsorbed heavy hydrocarbon gas, headspace methane, headspace heavy hydrocarbon gas, total aromatic hydrocarbons and their derivatives (260 nm) and total polycyclic aromatic hydrocarbons (320 nm) are circularly distributed around the Gaoshi 3 structure, and the hydrocarbon gas anomalies are closer to the outside of the trap than the aromatic hydrocarbon anomalies. The horizontal and vertical distribution patterns of geochemical anomalies along major seismic profiles suggest that the formation of hydrocarbon geochemical anomalies may be related to the Gaoshi 3 structure and vertical leakage of deep reservoirs. Based on the observation, a double halo geochemical anomaly model around the Gaoshi 3 structure is established. The inner halo anomalies are mainly aromatic hydrocarbon index anomalies, which may be caused by the seepage of residual reservoirs in the upper part of the Gaoshi 3 structure, while the outer halo anomalies are mainly hydrocarbon gas anomalies, caused by the seepage of primary gas reservoirs in the deep part of the Gaoshi 3 structure. The relationship between surface geochemical anomalies and marginal faults of the Gaoshi 3 structure shows that both inner and outer halo anomalies are closely related to the margin faults of the Gaoshi 3 structure in space, indicating that these marginal faults may be the main migration path for deep oil and gas vertical leakage, at the same time, also meaning that the Gaoshi 3 structure is the first choice for drilling well to explore the Mesozoic-Paleozoic marine oil and gas on the Laoshan uplift..

  • 加载中
  • [1] Horvitz L. Geochemical exploration for petroleum [J]. Science, 1985, 229(4716): 821-827. doi: 10.1126/science.229.4716.821

    CrossRef Google Scholar

    [2] Brooks J M, Kennicutt M C II, Carey B D Jr. Offshore surface geochemical exploration [J]. Oil & Gas Journal, 1986, 84(42): 66-72.

    Google Scholar

    [3] Abrams M A. Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea, Alaska [J]. Marine and Petroleum Geology, 1992, 9(2): 208-221. doi: 10.1016/0264-8172(92)90092-S

    CrossRef Google Scholar

    [4] Abrams M A. Interpretation of methane carbon isotopes extracted from surficial marine sediments for detection of subsurface hydrocarbons[M]//Schumacher D, Abrams M A. Hydrocarbon Migration and Its Near-Surface Expression. Tulsa, Oklahoma, USA: AAPG, 1996, 66: 309-318.

    Google Scholar

    [5] Faber E, Stahl W. Geochemical surface exploration for hydrocarbons in North Sea [J]. AAPG Bulletin, 1984, 68(3): 363-386.

    Google Scholar

    [6] Hvoslef S, Chrustie O H J, Sassen R, et al. Test of a new surface geochemistry tool for resource prediction in frontier areas [J]. Marine and Petroleum Geology, 1996, 13(1): 107-124. doi: 10.1016/0264-8172(95)00032-1

    CrossRef Google Scholar

    [7] Klusman R W, Saeed M A. Comparison of light hydrocarbon microseepage mechanisms[M]//Schumacher D, Abrams M A. Hydrocarbon Migration and Its Near-Surface Expression. Tulsa, Oklahoma, USA: AAPG, 1996, 66: 157-168.

    Google Scholar

    [8] Thrasher J, Fleet A J, Hay S J, et al. Understanding geology as the key to using seepage in exploration: spectrum of seepage styles[M]//Schumacher D, Abrams M A. Hydrocarbon Migration and Its Near-Surface Expression. Tulsa, Oklahoma USA: AAPG, 1996, 66: 223-241.

    Google Scholar

    [9] Brown A. Evaluation of possible gas microseepage mechanisms [J]. AAPG Bulletin, 2000, 84(11): 1775-1789.

    Google Scholar

    [10] Saunders D F, Burson K R, Thompson C K. Model for hydrocarbon microseepage and related near-surface alterations [J]. AAPG Bulletin, 1999, 83(1): 170-185.

    Google Scholar

    [11] Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment [J]. Marine and Petroleum Geology, 2005, 22(4): 457-477. doi: 10.1016/j.marpetgeo.2004.08.003

    CrossRef Google Scholar

    [12] 朱炳球, 孙忠军, 余慧. 浅海油气地球化学勘查前景[J]. 物探与化探, 1996, 20(3):161-171

    Google Scholar

    ZHU Bingqiu, SUN Zhongjun, YU Hui. The prospects of shallow-sea oil and gas geochemical exploration [J]. Geophysical and Geochemical Exploration, 1996, 20(3): 161-171.

    Google Scholar

    [13] 李双林, 何拥军, 肖菲, 等. 南黄海北部盆地表层沉积物烃类地球化学探测[J]. 海洋地质与第四纪地质, 2003, 23(4):39-44

    Google Scholar

    LI Shuanglin, HE Yongjun, XIAO Fei, et al. Geochemical exploration for hydrocarbon in the northern South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2003, 23(4): 39-44.

    Google Scholar

    [14] 李双林, 李兴, 董贺平, 等. 南黄海中部海底沉积物烃类气体地球化学特征及成因类型[J]. 石油天然气学报, 2013, 35(1):20-25, 31 doi: 10.3969/j.issn.1000-9752.2013.01.005

    CrossRef Google Scholar

    LI Shuanglin, LI Xing, DONG Heping, et al. Geochemistry and genetic types of hydrocarbon gases from seabed sediments in the center of South Yellow Sea [J]. Journal of Oil and Gas Technology, 2013, 35(1): 20-25, 31. doi: 10.3969/j.issn.1000-9752.2013.01.005

    CrossRef Google Scholar

    [15] 李双林, 董贺平, 赵青芳, 等. 海洋油气目标地球化学探测及其在南黄海海域的应用[J]. 海洋地质动态, 2009, 25(12):19-26 doi: 10.3969/j.issn.1009-2722.2009.12.004

    CrossRef Google Scholar

    LI Shuanglin, DONG Heping, ZHAO Qingfang, et al. Target geochemical exploration of marine petroleum and its application in the South Yellow Sea [J]. Marine Geology Letters, 2009, 25(12): 19-26. doi: 10.3969/j.issn.1009-2722.2009.12.004

    CrossRef Google Scholar

    [16] 王连进, 叶加仁, 吴冲龙. 南黄海盆地前第三系油气地质特征[J]. 天然气工业, 2005, 25(7):1-3 doi: 10.3321/j.issn:1000-0976.2005.07.001

    CrossRef Google Scholar

    WANG Lianjin, YE Jiaren, WU Chonglong. Petroleum geological characteristics of Pre-Tertiary in South Yellow Sea Basin [J]. Natural Gas Industry, 2005, 25(7): 1-3. doi: 10.3321/j.issn:1000-0976.2005.07.001

    CrossRef Google Scholar

    [17] 张家强. 南黄海中、古生界油气勘探前景[J]. 海洋地质动态, 2002, 18(11):25-27 doi: 10.3969/j.issn.1009-2722.2002.11.010

    CrossRef Google Scholar

    ZHANG Jiaqiang. Petroleum exploration prospect for Mesozoic and Paleozoic in the South Yellow Sea [J]. Marine Geology Letters, 2002, 18(11): 25-27. doi: 10.3969/j.issn.1009-2722.2002.11.010

    CrossRef Google Scholar

    [18] 郭玉贵, 李延成, 许东禹, 等. 黄东海大陆架及邻域大地构造演化史[J]. 海洋地质与第四纪地质, 1997, 17(1):1-11

    Google Scholar

    GUO Yugui, LI Yancheng, XU Dongyu, et al. Tectonic evolution of Yellow sea, East China sea and continental shelf and adjacent areas [J]. Marine Geology & Quaternary Geology, 1997, 17(1): 1-11.

    Google Scholar

    [19] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    Google Scholar

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.

    Google Scholar

    [20] 郑求根, 蔡立国, 丁文龙, 等. 黄海海域盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(5):647-654 doi: 10.3321/j.issn:0253-9985.2005.05.015

    CrossRef Google Scholar

    ZHENG Qiugen, CAI Liguo, DING Wenlong, et al. Development and evolution of basins in Yellow Sea [J]. Oil & Gas Geology, 2005, 26(5): 647-654. doi: 10.3321/j.issn:0253-9985.2005.05.015

    CrossRef Google Scholar

    [21] 陈建文, 施剑, 刘俊, 等. 南黄海海相中-古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8

    Google Scholar

    CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.

    Google Scholar

    [22] 张海啟, 陈建文, 李刚, 等. 地震调查在南黄海崂山隆起的发现及其石油地质意义[J]. 海洋地质与第四纪地质, 2009, 29(3):107-113

    Google Scholar

    ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in Laoshan uplift of the South Yellow Sea and the significance [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 107-113.

    Google Scholar

    [23] 王丰, 李慧君, 张银国. 南黄海崂山隆起地层属性及油气地质[J]. 海洋地质与第四纪地质, 2010, 30(2):95-102

    Google Scholar

    WANG Feng, LI Huijun, ZHANG Yinguo. Stratigraphic geologic attribute and Hydrocarbon geology in Laoshan uplift of South Yellow Sea [J]. Marine Geology& Quaternary Geology, 2010, 30(2): 95-102.

    Google Scholar

    [24] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中-古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    Google Scholar

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.

    Google Scholar

    [25] 陈建文. 南黄海海相中生界-古生界具有形成大型油气田的物质基础[J]. 中国地质调查成果快讯, 2016, 2(12):6-10

    Google Scholar

    CHEN Jianwen. Material base of great resources in marine Mesozoic- Paleozoic in the South Yellow Sea Basin [J]. Results Express of China Geological Survey, 2016, 2(12): 6-10.

    Google Scholar

    [26] 陈建文. 南黄海崂山隆起海相中-古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70

    Google Scholar

    CHEN Jianwen. Many large trap structures develop in the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(4): 69-70.

    Google Scholar

    [27] 张全忠, 焦世鼎. 南京汤山地区志留系研究的新进展[J]. 中国地质科学院南京地质矿产研究所所刊, 1985, 6(2):97-111

    Google Scholar

    ZHANG Quanzhong, JIAO Shiding. The new success in the study of Silurian of Tangshan, Nanjing, Jiangsu Province [J]. Bull. Nanjing Inst. Geol. M. R., Chinese Acad. Geol. Sci., 1985, 6(2): 97-111.

    Google Scholar

    [28] 蔡峰, 熊斌辉. 南黄海海域与下扬子地区海相中-古生界地层对比及烃源岩评价[J]. 海洋地质动态, 2007, 23(6):1-6 doi: 10.3969/j.issn.1009-2722.2007.06.001

    CrossRef Google Scholar

    CAI Feng, XIONG Binhui. Correlation and source rock evaluation of marine Mesozoic-Paleozoic strata in South Yellow Sea and Lower Yangtze [J]. Marine Geology Letters, 2007, 23(6): 1-6. doi: 10.3969/j.issn.1009-2722.2007.06.001

    CrossRef Google Scholar

    [29] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2):1-16 doi: 10.3969/j.issn.1672-9854.2008.02.001

    CrossRef Google Scholar

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China(Part 1): Distribution of four suits of regional marine source rocks [J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001

    CrossRef Google Scholar

    [30] 李双建, 肖开华, 沃玉进, 等. 南方海相上奥陶统-下志留统优质烃源岩发育的控制因素[J]. 沉积学报, 2008, 26(5):872-880

    Google Scholar

    LI Shuangjian, XIAO Kaihua, WO Yujin, et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China [J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.

    Google Scholar

    [31] 高林, 周雁. 中下扬子区海相中-古生界烃源岩评价与潜力分析[J]. 油气地质与采收率, 2009, 16(3):30-33 doi: 10.3969/j.issn.1009-9603.2009.03.009

    CrossRef Google Scholar

    GAO Lin, ZHOU Yan. Evaluation and potential analysis on source rocks in Mesozoic and Paleozoic marine sequence, middle-lower Yangtze area [J]. Petroleum Geology and Recovery Efficiency, 2009, 16(3): 30-33. doi: 10.3969/j.issn.1009-9603.2009.03.009

    CrossRef Google Scholar

    [32] 刘小平, 潘继平, 董清源, 等. 苏北地区古生界页岩气形成地质条件[J]. 天然气地球科学, 2011, 22(6):1100-1108

    Google Scholar

    LIU Xiaoping, PAN Jiping, DONG Qingyuan, et al. Geological conditions of shale gas forming in Paleozoic Subei area [J]. Natural Gas Geoscience, 2011, 22(6): 1100-1108.

    Google Scholar

    [33] 牟传龙, 周恳恳, 梁薇, 等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4):526-532

    Google Scholar

    MOU Chuanlong, ZHOU Kenken, LIANG Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration [J]. Acta Geologica Sinica, 2011, 85(4): 526-532.

    Google Scholar

    [34] 李皓月, 刘倩茹, 薛林福. 苏北盆地中-古生界海相烃源岩发育规律及其意义[J]. 世界地质, 2014, 33(1):178-189 doi: 10.3969/j.issn.1004-5589.2014.01.019

    CrossRef Google Scholar

    LI Haoyue, LIU Qianru, XUE Linfu. Development and significance of Mesozoic-Paleozoic marine hydrocarbon source rocks in Subei Basin [J]. Global Geology, 2014, 33(1): 178-189. doi: 10.3969/j.issn.1004-5589.2014.01.019

    CrossRef Google Scholar

    [35] 肖国林, 张银国, 吴志强, 等. 南黄海盆地烃源潜力比较性评价[J]. 海洋地质前沿, 2014, 30(7):17-21

    Google Scholar

    XIAO Guolin, ZHANG Yinguo, WU Zhiqiang, et al. Comparative assessment of hydrocarbon resource potential in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 17-21.

    Google Scholar

    [36] 张银国, 陈清华, 陈建文, 等. 下扬子海相中-古生界烃源岩发育的控制因素[J]. 海洋地质前沿, 2016, 32(1):8-12

    Google Scholar

    ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen, et al. Controlling factors on the Mesozoic-Paleozoic marine source rocks in the Lower Yangtze platform [J]. Marine Geology Frontiers, 2016, 32(1): 8-12.

    Google Scholar

    [37] 贾东, 胡文瑄, 姚素平, 等. 江苏省下志留统黑色页岩浅井钻探及其页岩气潜力分析[J]. 高校地质学报, 2016, 22(1):127-137

    Google Scholar

    JIA Dong, HU Wenxuan, YAO Suping, et al. Shallow borehole drilling of the lower Silurian black shale in Jiangsu province and the shale gas potential analysis [J]. Geological Journal of China Universities, 2016, 22(1): 127-137.

    Google Scholar

    [38] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征-以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046

    Google Scholar

    CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in Central uplift of South Yellow Sea: A case study of CSDP-2 coring well [J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4): 1030-1046.

    Google Scholar

    [39] 肖国林, 蔡来星, 郭兴伟, 等. 南黄海中部隆起CSDP-2井中-古生界烃源岩精细评价[J]. 海洋地质前沿, 2017, 33(12):24-36

    Google Scholar

    XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Detailed assessment of Meso-Paleozoic hydrocarbon source rocks: Implications from well CSDP-2 on the Central uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2017, 33(12): 24-36.

    Google Scholar

    [40] 朱光有, 金强, 王锐. 有效烃源岩的识别方法[J]. 石油大学学报: 自然科学版, 2003, 27(2):6-10

    Google Scholar

    ZHU Guangyou, JIN Qiang, WANG Rui. Identification methods for efficient source rocks [J]. Journal of the University of Petroleum, China: Edition of Natural Science, 2003, 27(2): 6-10.

    Google Scholar

    [41] 郭兴伟, 张训华, 吴志强, 等. 大陆架科学钻探CSDP-2井科学目标及初步成果[J]. 吉林大学学报: 地球科学版, 2019, 49(1):1-12

    Google Scholar

    GUO Xingwei, ZHANG Xunhua, WU Zhiqiang, et al. Scientific objectives and preliminary progresses of CSDP-2 well in Continental Shelf Drilling Program [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 1-12.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(996) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint