Citation: | YANG Jun, ZHAO Yanyan, WU Jiaqing, WEI Haotian, LONG Haiyan, LI Sanzhong, BI Naishuang. Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 100-110. doi: 10.16562/j.cnki.0256-1492.2019083001 |
Foraminifera form their crust by absorption or capture of calcium or silica from the seawater they live in. As the results, the geochemical features of the crust are the efficient indicators of palaeoclimate, palaeooceanography and palaeoenvironments during their life. In the year of 2017, columnar samples of a pushcore were collected by the “Jiaolong” submersible precisely at the foot of the Zhenbei seamount near the Huangyan Island in the Middle of South China Sea. The Mg/Ca ratios and the carbon and oxygen isotope compositions of the planktonic foraminifera Globigerinoides ruber and Globeriginoides sacculifer shells were measured to trace the history of sea surface temperatures (SST) and influence parameters. The results show that the SST in the sea area varied from 24.4 to 29.3 ℃ since 12.6 ka with an average of 26.2 ℃. Some cold events can be the obviously identified, which could be correlated with the events of Younger Dryas and Holocene East Asian summer monsoon. These events may be controlled by the ENSO activities and the shift of the mean location of ITCZ, and even influenced by the North Atlantic ice rafting events. In addition, we found that during the period of Holocene the fractionation of Δ13CG.sacculifer-G.ruber between the carbon isotope compositions of G.sacculifer and G.ruber may also be constrained by SST since the Δ13CG.sacculifer-G.ruber values was negatively biased when SST decreased and vice versa.
[1] | Lea D W. Trace elements in foraminiferal calcite[M]//Gupta B K S. Modern Foraminifera. Dordrecht: Springer, 1999: 259-277. |
[2] | Basak C, Rathburn A E, Pérez M E, et al. Carbon and oxygen isotope geochemistry of live (stained) benthic foraminifera from the Aleutian Margin and the Southern Australian Margin [J]. Marine Micropaleontology, 2009, 70(3-4): 89-101. doi: 10.1016/j.marmicro.2008.11.002 |
[3] | Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system [J]. Earth and Planetary Science Letters, 2011, 302(3-4): 403-413. doi: 10.1016/j.jpgl.2010.12.034 |
[4] | Vigier N, Rollion-Bard C, Levenson Y, et al. Lithium isotopes in foraminifera shells as a novel proxy for the ocean Dissolved Inorganic Carbon (DIC) [J]. Comptes Rendus Geoscience, 2015, 347(1): 43-51. doi: 10.1016/j.crte.2014.12.001 |
[5] | Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch [J]. Nature, 2004, 431(7004): 56-59. doi: 10.1038/nature02903 |
[6] | Schönfeld J, Kudrass H R. Hemipelagic sediment accumulation rates in the South China sea related to Late Quaternary sea-level changes [J]. Quaternary Research, 1993, 40(3): 368-379. doi: 10.1006/qres.1993.1090 |
[7] | 汪品先, 赵泉鸿, 翦知湣, 等. 南海三千万年的深海记录[J]. 科学通报, 2003, 48(23):2524-2535 doi: 10.1007/BF03037016 WANG Pinxian, ZHAO Quanhong, JIAN Zhimin, et al. Thirty million year deep sea records in the South China Sea [J]. Chinese Science Bulletin, 2003, 48(23): 2524-2535. doi: 10.1007/BF03037016 |
[8] | Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009 |
[9] | Woodson A L, Leorri E, Culver S J, et al. Sea-surface temperatures for the last 7200 years from the eastern Sunda Shelf, South China Sea: climatic inferences from planktonic foraminiferal Mg/Ca ratios [J]. Quaternary Science Reviews, 2017, 165: 13-24. doi: 10.1016/j.quascirev.2017.04.009 |
[10] | Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography, 1999, 14(2): 224-231. doi: 10.1029/1998PA900015 |
[11] | Yang Y P, Xiang R, Liu J G, et al. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP [J]. Journal of Asian Earth Sciences, 2018, 171: 178-186. |
[12] | Zhou B, Zheng H B, Yang W G, et al. Climate and vegetation variations since the LGM recorded by biomarkers from a sediment core in the northern South China Sea [J]. Journal of Quaternary Science, 2012, 27(9): 948-955. doi: 10.1002/jqs.2588 |
[13] | Wu M S, Zong Y Q, Mok K M, et al. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea [J]. Journal of Asian Earth Sciences, 2017, 135: 268-280. doi: 10.1016/j.jseaes.2017.01.004 |
[14] | Tian J, Huang E Q, Pak D K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1-2): 319-324. doi: 10.1016/j.palaeo.2010.04.005 |
[15] | Wang L J, Wang P X. Late Quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography, 1990, 5(1): 77-90. doi: 10.1029/PA005i001p00077 |
[16] | 刘伟. 南海北部陆坡MIS5以来的古环境记录[D]. 中国地质大学(北京)博士学位论文, 2012. LIU Wei. Paleoclimatic records from northern slope of South China Sea since the marine isotope stage 5[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2012. |
[17] | 钱永甫, 王谦谦, 朱伯承. 南海海流对冬季风风应力的响应特征[J]. 气象科学, 2000, 20(1):1-8 doi: 10.3969/j.issn.1009-0827.2000.01.001 QIAN Yongfu, WANG Qianqian, Peter C. Responsive properties of oceanic currents in the South China Sea to wind stress of winter monsoon [J]. Scientia Meteorologica Sinica, 2000, 20(1): 1-8. doi: 10.3969/j.issn.1009-0827.2000.01.001 |
[18] | Zhang H B, Pin Y. Deep-water bottom current research in the northern South China Sea [J]. Marine Georesources & Geotechnology, 2012, 30(2): 122-129. |
[19] | 柴扉, 薛惠洁, 侍茂崇. 南海升降流区域分布及形成机制分析[C]//中国海洋学文集——南海海流数值计算及中尺度特征研究. 北京: 中国海洋学会, 2001. CHAI Fei, XUE Huijie, SHI Maochong. Formation and distribution of upwelling and downwelling in the South China Sea[C]//. Beijing: Chinese Society for Oceanography, 2001. |
[20] | Whitko A N, Hastings D W, Flower B P. Past sea surface temperatures in the tropical South China Sea based on a new foraminiferal Mg calibration [J]. MAR Sci, 2002, 1. |
[21] | 路波. 25万年来西太平洋暖池核心区古海洋学研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2010. LU Bo. Past 250 kyr Paleoceanography in west pacific warm pool[D]. Doctor Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2010. |
[22] | 潘梦迪, 邬黛黛, 吴能友, 等. 南海北部神狐海域晚末次冰期以来有孔虫特征及其对古海洋环境的指示[J]. 海洋地质与第四纪地质, 2017, 37(2):127-138 PAN Mengdi, WU Daidai, WU Nengyou, et al. Characteristics of foraminiferal assemblages since Last Glacial from Shenhu area of northern South China Sea and implications for Paleoceanographic environmental changes [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 127-138. |
[23] | Hastings D W, Kienast M, Steinke S, et al. A comparison of three independent paleotemperature estimates from a high resolution record of Deglacial SST records in the tropical South China Sea[C]//Proceedings of AGU Fall Meeting. 2001: 10. |
[24] | 梁静之, 黄宝琦, 董轶婷, 等. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300 LIANG Jingzhi, HUANG Baoqi, DONG Yiting, et al. Benthic foraminifera’s implications on Paleo-environment variability in MD12-3432 in the northern South China Sea since MIS 11 [J]. Earth Science Frontiers, 2016, 23(4): 292-300. |
[25] | 汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1):1-11 WANG Pinxian. Glacial carbonate cycles in western Pacific marginal Seas [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11. |
[26] | Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios [J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033 |
[27] | 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8):815-822 doi: 10.3321/j.issn:1001-8166.2005.08.001 LI Jianru. The application of foraminiferal shell Mg/Ca ratio in Paleo-environmental studies [J]. Advances in Earth Science, 2005, 20(8): 815-822. doi: 10.3321/j.issn:1001-8166.2005.08.001 |
[28] | Andersen K K, Azuma N, Barnola, J M, et al. High-resolution record of Northern Hemisphere climate extending into the Last Interglacial Period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805 |
[29] | Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036 |
[30] | Steinke S, Chiu H Y, Yu P S, et al. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22, 000 years [J]. Quaternary Science Reviews, 2006, 25(13-14): 1475-1488. doi: 10.1016/j.quascirev.2005.12.008 |
[31] | Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea [J]. Marine Geology, 1999, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0 |
[32] | Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194 |
[33] | 李小洁. 南海北部沉积物记录的早更新世气候变化[D]. 中国科学院研究生院(地球环境研究所)硕士学位论文, 2015. LI Xiaojie. The early Pleistocene climate change recorded in the northern South China Sea sediments[D]. Master Dissertation of Institute of Earth Environment, Chinese Academy of Sciences, 2015. |
[34] | Geyh M A, Streif H, Kudrass H R. Sea-level changes during the Late Pleistocene and Holocene in the Strait of Malacca [J]. Nature, 1979, 278(5703): 441-443. doi: 10.1038/278441a0 |
[35] | Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a Late-Glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033 |
[36] | Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene [J]. Science, 2001, 294(5549): 2130-2136. doi: 10.1126/science.1065680 |
[37] | Zhong W, Cao J Y, Xue J B, et al. A 15, 400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China [J]. Quaternary Research, 2015, 84(2): 246-254. doi: 10.1016/j.yqres.2015.06.002 |
[38] | Liu Y H, Henderson G M, Hu C Y, et al. Links between the East Asian monsoon and North Atlantic climate during the 8, 200 year event [J]. Nature Geoscience, 2013, 6(2): 117-120. doi: 10.1038/ngeo1708 |
[39] | Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14, 000 years [J]. Quaternary Science Reviews, 2009, 28(9-10): 840-849. doi: 10.1016/j.quascirev.2008.11.011 |
[40] | Zhao L, Ma C M, Leipe C, et al. Holocene vegetation dynamics in response to climate change and human activities derived from pollen and charcoal records from southeastern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 644-660. doi: 10.1016/j.palaeo.2017.06.035 |
[41] | 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2018. LI Mingkun. Paleoclimate and paleoenvironment evolutions in the northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018. |
[42] | 邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学D辑: 地球科学, 2007, 50(7):1060-1066 doi: 10.1007/s11430-007-0015-y SHAO Lei, LI Xuejie, GENG Jianhua, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y |
[43] | Chen H, Xie X, Zhang W Y, et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2016, 378: 101-113. doi: 10.1016/j.margeo.2015.11.002 |
[44] | Yu K F, Zhao J X, Wei G J, et al. Mid–Late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea [J]. Global and Planetary Change, 2005, 47(2-4): 301-316. doi: 10.1016/j.gloplacha.2004.10.018 |
[45] | Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: links to solar changes and North Atlantic Climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296 |
[46] | Wang X S, Chu G Q, Sheng M, et al. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation [J]. Earth and Planetary Science Letters, 2016, 451: 22-30. doi: 10.1016/j.jpgl.2016.07.006 |
[47] | Zhou X, Sun L G, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region [J]. Earth and Planetary Science Letters, 2016, 456: 39-46. doi: 10.1016/j.jpgl.2016.09.052 |
[48] | 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学B辑, 1994, 37(3):353-365 SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climatic fluctuation and important events of Holocene Megathermal in China [J]. Scinece in China (Series B), 1994, 37(3): 353-365. |
[49] | Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618 |
[50] | Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692 |
[51] | Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q |
[52] | Selvaraj K, Chen C T A, Lou J Y. Holocene East Asian monsoon variability: links to solar and tropical Pacific forcing [J]. Geophysical Research Letters, 2007, 34(1): L01703. |
[53] | Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J]. Quaternary Science Reviews, 2007, 26(1-2): 170-188. doi: 10.1016/j.quascirev.2006.04.012 |
[54] | Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the Intertropical convergence zone through the holocene [J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725 |
[55] | Clement A C, Seager R, Cane M A. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit [J]. Paleoceanography, 2000, 15(6): 731-737. doi: 10.1029/1999PA000466 |
[56] | Fedorov A V, Philander S G. Is El Niño changing? [J]. Science, 2000, 288(5473): 1997-2002. doi: 10.1126/science.288.5473.1997 |
[57] | Higginson M J, Altabet M A, Wincze L, et al. A solar (irradiance) trigger for millennial-scale abrupt changes in the southwest monsoon? [J]. Paleoceanography, 2004, 19(3): PA3015. |
[58] | Li J Y, Dodson J, Yan H, et al. Quantitative Holocene climatic reconstructions for the Lower Yangtze region of China [J]. Climate Dynamics, 2018, 50(3): 1101-1113. |
[59] | Liu Z Y, Kutzbach J, Wu L X. Modeling climate shift of El Nino variability in the Holocene [J]. Geophysical Research Letters, 2000, 27(15): 2265-2268. doi: 10.1029/2000GL011452 |
[60] | Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013 |
The sample location on the Huangyan Island in the eastern part of the South China Sea (SCS) and other stations mentioned in this paper
The age frame of the core on the Huangyan Island in SCS
Carbon and oxygen isotopes and Mg/Ca-SST records of foraminifera shell in the Huangyan Island in SCS and their correlation.
SEM photos of the planktonic foraminifera
Correlation of paleoclimatic patterns from different regions since 12.6 ka
The comparison of palaeoenvironmental proxies between the Huangyan Island of SCS and other locations