2020 Vol. 40, No. 2
Article Contents

YANG Jun, ZHAO Yanyan, WU Jiaqing, WEI Haotian, LONG Haiyan, LI Sanzhong, BI Naishuang. Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 100-110. doi: 10.16562/j.cnki.0256-1492.2019083001
Citation: YANG Jun, ZHAO Yanyan, WU Jiaqing, WEI Haotian, LONG Haiyan, LI Sanzhong, BI Naishuang. Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 100-110. doi: 10.16562/j.cnki.0256-1492.2019083001

Geochemical record of foraminifera and its reflection on climate change in the central South China Sea since Holocene

More Information
  • Foraminifera form their crust by absorption or capture of calcium or silica from the seawater they live in. As the results, the geochemical features of the crust are the efficient indicators of palaeoclimate, palaeooceanography and palaeoenvironments during their life. In the year of 2017, columnar samples of a pushcore were collected by the “Jiaolong” submersible precisely at the foot of the Zhenbei seamount near the Huangyan Island in the Middle of South China Sea. The Mg/Ca ratios and the carbon and oxygen isotope compositions of the planktonic foraminifera Globigerinoides ruber and Globeriginoides sacculifer shells were measured to trace the history of sea surface temperatures (SST) and influence parameters. The results show that the SST in the sea area varied from 24.4 to 29.3 ℃ since 12.6 ka with an average of 26.2 ℃. Some cold events can be the obviously identified, which could be correlated with the events of Younger Dryas and Holocene East Asian summer monsoon. These events may be controlled by the ENSO activities and the shift of the mean location of ITCZ, and even influenced by the North Atlantic ice rafting events. In addition, we found that during the period of Holocene the fractionation of Δ13CG.sacculifer-G.ruber between the carbon isotope compositions of G.sacculifer and G.ruber may also be constrained by SST since the Δ13CG.sacculifer-G.ruber values was negatively biased when SST decreased and vice versa.

  • 加载中
  • [1] Lea D W. Trace elements in foraminiferal calcite[M]//Gupta B K S. Modern Foraminifera. Dordrecht: Springer, 1999: 259-277.

    Google Scholar

    [2] Basak C, Rathburn A E, Pérez M E, et al. Carbon and oxygen isotope geochemistry of live (stained) benthic foraminifera from the Aleutian Margin and the Southern Australian Margin [J]. Marine Micropaleontology, 2009, 70(3-4): 89-101. doi: 10.1016/j.marmicro.2008.11.002

    CrossRef Google Scholar

    [3] Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system [J]. Earth and Planetary Science Letters, 2011, 302(3-4): 403-413. doi: 10.1016/j.jpgl.2010.12.034

    CrossRef Google Scholar

    [4] Vigier N, Rollion-Bard C, Levenson Y, et al. Lithium isotopes in foraminifera shells as a novel proxy for the ocean Dissolved Inorganic Carbon (DIC) [J]. Comptes Rendus Geoscience, 2015, 347(1): 43-51. doi: 10.1016/j.crte.2014.12.001

    CrossRef Google Scholar

    [5] Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch [J]. Nature, 2004, 431(7004): 56-59. doi: 10.1038/nature02903

    CrossRef Google Scholar

    [6] Schönfeld J, Kudrass H R. Hemipelagic sediment accumulation rates in the South China sea related to Late Quaternary sea-level changes [J]. Quaternary Research, 1993, 40(3): 368-379. doi: 10.1006/qres.1993.1090

    CrossRef Google Scholar

    [7] 汪品先, 赵泉鸿, 翦知湣, 等. 南海三千万年的深海记录[J]. 科学通报, 2003, 48(23):2524-2535 doi: 10.1007/BF03037016

    CrossRef Google Scholar

    WANG Pinxian, ZHAO Quanhong, JIAN Zhimin, et al. Thirty million year deep sea records in the South China Sea [J]. Chinese Science Bulletin, 2003, 48(23): 2524-2535. doi: 10.1007/BF03037016

    CrossRef Google Scholar

    [8] Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009

    CrossRef Google Scholar

    [9] Woodson A L, Leorri E, Culver S J, et al. Sea-surface temperatures for the last 7200 years from the eastern Sunda Shelf, South China Sea: climatic inferences from planktonic foraminiferal Mg/Ca ratios [J]. Quaternary Science Reviews, 2017, 165: 13-24. doi: 10.1016/j.quascirev.2017.04.009

    CrossRef Google Scholar

    [10] Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography, 1999, 14(2): 224-231. doi: 10.1029/1998PA900015

    CrossRef Google Scholar

    [11] Yang Y P, Xiang R, Liu J G, et al. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP [J]. Journal of Asian Earth Sciences, 2018, 171: 178-186.

    Google Scholar

    [12] Zhou B, Zheng H B, Yang W G, et al. Climate and vegetation variations since the LGM recorded by biomarkers from a sediment core in the northern South China Sea [J]. Journal of Quaternary Science, 2012, 27(9): 948-955. doi: 10.1002/jqs.2588

    CrossRef Google Scholar

    [13] Wu M S, Zong Y Q, Mok K M, et al. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea [J]. Journal of Asian Earth Sciences, 2017, 135: 268-280. doi: 10.1016/j.jseaes.2017.01.004

    CrossRef Google Scholar

    [14] Tian J, Huang E Q, Pak D K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1-2): 319-324. doi: 10.1016/j.palaeo.2010.04.005

    CrossRef Google Scholar

    [15] Wang L J, Wang P X. Late Quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography, 1990, 5(1): 77-90. doi: 10.1029/PA005i001p00077

    CrossRef Google Scholar

    [16] 刘伟. 南海北部陆坡MIS5以来的古环境记录[D]. 中国地质大学(北京)博士学位论文, 2012.

    Google Scholar

    LIU Wei. Paleoclimatic records from northern slope of South China Sea since the marine isotope stage 5[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2012.

    Google Scholar

    [17] 钱永甫, 王谦谦, 朱伯承. 南海海流对冬季风风应力的响应特征[J]. 气象科学, 2000, 20(1):1-8 doi: 10.3969/j.issn.1009-0827.2000.01.001

    CrossRef Google Scholar

    QIAN Yongfu, WANG Qianqian, Peter C. Responsive properties of oceanic currents in the South China Sea to wind stress of winter monsoon [J]. Scientia Meteorologica Sinica, 2000, 20(1): 1-8. doi: 10.3969/j.issn.1009-0827.2000.01.001

    CrossRef Google Scholar

    [18] Zhang H B, Pin Y. Deep-water bottom current research in the northern South China Sea [J]. Marine Georesources & Geotechnology, 2012, 30(2): 122-129.

    Google Scholar

    [19] 柴扉, 薛惠洁, 侍茂崇. 南海升降流区域分布及形成机制分析[C]//中国海洋学文集——南海海流数值计算及中尺度特征研究. 北京: 中国海洋学会, 2001.

    Google Scholar

    CHAI Fei, XUE Huijie, SHI Maochong. Formation and distribution of upwelling and downwelling in the South China Sea[C]//. Beijing: Chinese Society for Oceanography, 2001.

    Google Scholar

    [20] Whitko A N, Hastings D W, Flower B P. Past sea surface temperatures in the tropical South China Sea based on a new foraminiferal Mg calibration [J]. MAR Sci, 2002, 1.

    Google Scholar

    [21] 路波. 25万年来西太平洋暖池核心区古海洋学研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2010.

    Google Scholar

    LU Bo. Past 250 kyr Paleoceanography in west pacific warm pool[D]. Doctor Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2010.

    Google Scholar

    [22] 潘梦迪, 邬黛黛, 吴能友, 等. 南海北部神狐海域晚末次冰期以来有孔虫特征及其对古海洋环境的指示[J]. 海洋地质与第四纪地质, 2017, 37(2):127-138

    Google Scholar

    PAN Mengdi, WU Daidai, WU Nengyou, et al. Characteristics of foraminiferal assemblages since Last Glacial from Shenhu area of northern South China Sea and implications for Paleoceanographic environmental changes [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 127-138.

    Google Scholar

    [23] Hastings D W, Kienast M, Steinke S, et al. A comparison of three independent paleotemperature estimates from a high resolution record of Deglacial SST records in the tropical South China Sea[C]//Proceedings of AGU Fall Meeting. 2001: 10.

    Google Scholar

    [24] 梁静之, 黄宝琦, 董轶婷, 等. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300

    Google Scholar

    LIANG Jingzhi, HUANG Baoqi, DONG Yiting, et al. Benthic foraminifera’s implications on Paleo-environment variability in MD12-3432 in the northern South China Sea since MIS 11 [J]. Earth Science Frontiers, 2016, 23(4): 292-300.

    Google Scholar

    [25] 汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1):1-11

    Google Scholar

    WANG Pinxian. Glacial carbonate cycles in western Pacific marginal Seas [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.

    Google Scholar

    [26] Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios [J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033

    CrossRef Google Scholar

    [27] 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8):815-822 doi: 10.3321/j.issn:1001-8166.2005.08.001

    CrossRef Google Scholar

    LI Jianru. The application of foraminiferal shell Mg/Ca ratio in Paleo-environmental studies [J]. Advances in Earth Science, 2005, 20(8): 815-822. doi: 10.3321/j.issn:1001-8166.2005.08.001

    CrossRef Google Scholar

    [28] Andersen K K, Azuma N, Barnola, J M, et al. High-resolution record of Northern Hemisphere climate extending into the Last Interglacial Period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805

    CrossRef Google Scholar

    [29] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036

    CrossRef Google Scholar

    [30] Steinke S, Chiu H Y, Yu P S, et al. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22, 000 years [J]. Quaternary Science Reviews, 2006, 25(13-14): 1475-1488. doi: 10.1016/j.quascirev.2005.12.008

    CrossRef Google Scholar

    [31] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea [J]. Marine Geology, 1999, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0

    CrossRef Google Scholar

    [32] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [33] 李小洁. 南海北部沉积物记录的早更新世气候变化[D]. 中国科学院研究生院(地球环境研究所)硕士学位论文, 2015.

    Google Scholar

    LI Xiaojie. The early Pleistocene climate change recorded in the northern South China Sea sediments[D]. Master Dissertation of Institute of Earth Environment, Chinese Academy of Sciences, 2015.

    Google Scholar

    [34] Geyh M A, Streif H, Kudrass H R. Sea-level changes during the Late Pleistocene and Holocene in the Strait of Malacca [J]. Nature, 1979, 278(5703): 441-443. doi: 10.1038/278441a0

    CrossRef Google Scholar

    [35] Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a Late-Glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033

    CrossRef Google Scholar

    [36] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene [J]. Science, 2001, 294(5549): 2130-2136. doi: 10.1126/science.1065680

    CrossRef Google Scholar

    [37] Zhong W, Cao J Y, Xue J B, et al. A 15, 400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China [J]. Quaternary Research, 2015, 84(2): 246-254. doi: 10.1016/j.yqres.2015.06.002

    CrossRef Google Scholar

    [38] Liu Y H, Henderson G M, Hu C Y, et al. Links between the East Asian monsoon and North Atlantic climate during the 8, 200 year event [J]. Nature Geoscience, 2013, 6(2): 117-120. doi: 10.1038/ngeo1708

    CrossRef Google Scholar

    [39] Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14, 000 years [J]. Quaternary Science Reviews, 2009, 28(9-10): 840-849. doi: 10.1016/j.quascirev.2008.11.011

    CrossRef Google Scholar

    [40] Zhao L, Ma C M, Leipe C, et al. Holocene vegetation dynamics in response to climate change and human activities derived from pollen and charcoal records from southeastern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 644-660. doi: 10.1016/j.palaeo.2017.06.035

    CrossRef Google Scholar

    [41] 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2018.

    Google Scholar

    LI Mingkun. Paleoclimate and paleoenvironment evolutions in the northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018.

    Google Scholar

    [42] 邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学D辑: 地球科学, 2007, 50(7):1060-1066 doi: 10.1007/s11430-007-0015-y

    CrossRef Google Scholar

    SHAO Lei, LI Xuejie, GENG Jianhua, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y

    CrossRef Google Scholar

    [43] Chen H, Xie X, Zhang W Y, et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2016, 378: 101-113. doi: 10.1016/j.margeo.2015.11.002

    CrossRef Google Scholar

    [44] Yu K F, Zhao J X, Wei G J, et al. Mid–Late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea [J]. Global and Planetary Change, 2005, 47(2-4): 301-316. doi: 10.1016/j.gloplacha.2004.10.018

    CrossRef Google Scholar

    [45] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: links to solar changes and North Atlantic Climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296

    CrossRef Google Scholar

    [46] Wang X S, Chu G Q, Sheng M, et al. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation [J]. Earth and Planetary Science Letters, 2016, 451: 22-30. doi: 10.1016/j.jpgl.2016.07.006

    CrossRef Google Scholar

    [47] Zhou X, Sun L G, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region [J]. Earth and Planetary Science Letters, 2016, 456: 39-46. doi: 10.1016/j.jpgl.2016.09.052

    CrossRef Google Scholar

    [48] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学B辑, 1994, 37(3):353-365

    Google Scholar

    SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climatic fluctuation and important events of Holocene Megathermal in China [J]. Scinece in China (Series B), 1994, 37(3): 353-365.

    Google Scholar

    [49] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [50] Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692

    CrossRef Google Scholar

    [51] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q

    CrossRef Google Scholar

    [52] Selvaraj K, Chen C T A, Lou J Y. Holocene East Asian monsoon variability: links to solar and tropical Pacific forcing [J]. Geophysical Research Letters, 2007, 34(1): L01703.

    Google Scholar

    [53] Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J]. Quaternary Science Reviews, 2007, 26(1-2): 170-188. doi: 10.1016/j.quascirev.2006.04.012

    CrossRef Google Scholar

    [54] Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the Intertropical convergence zone through the holocene [J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725

    CrossRef Google Scholar

    [55] Clement A C, Seager R, Cane M A. Suppression of El Niño during the Mid-Holocene by changes in the Earth's orbit [J]. Paleoceanography, 2000, 15(6): 731-737. doi: 10.1029/1999PA000466

    CrossRef Google Scholar

    [56] Fedorov A V, Philander S G. Is El Niño changing? [J]. Science, 2000, 288(5473): 1997-2002. doi: 10.1126/science.288.5473.1997

    CrossRef Google Scholar

    [57] Higginson M J, Altabet M A, Wincze L, et al. A solar (irradiance) trigger for millennial-scale abrupt changes in the southwest monsoon? [J]. Paleoceanography, 2004, 19(3): PA3015.

    Google Scholar

    [58] Li J Y, Dodson J, Yan H, et al. Quantitative Holocene climatic reconstructions for the Lower Yangtze region of China [J]. Climate Dynamics, 2018, 50(3): 1101-1113.

    Google Scholar

    [59] Liu Z Y, Kutzbach J, Wu L X. Modeling climate shift of El Nino variability in the Holocene [J]. Geophysical Research Letters, 2000, 27(15): 2265-2268. doi: 10.1029/2000GL011452

    CrossRef Google Scholar

    [60] Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1526) PDF downloads(31) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint