2020 Vol. 40, No. 4
Article Contents

TANG Jiali, CAO Yuncheng, CHEN Duofu. Simulation of bottom boundaries of abiotic methane hydrate stability zone in some marine serpentinization areas[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 107-115. doi: 10.16562/j.cnki.0256-1492.2019081701
Citation: TANG Jiali, CAO Yuncheng, CHEN Duofu. Simulation of bottom boundaries of abiotic methane hydrate stability zone in some marine serpentinization areas[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 107-115. doi: 10.16562/j.cnki.0256-1492.2019081701

Simulation of bottom boundaries of abiotic methane hydrate stability zone in some marine serpentinization areas

More Information
  • Fluids circulating through active serpentinization systems are often highly enriched in methane. When the fluid enriched in abiotic methane migrates upward, gas hydrate could form if there occur suitable thermodynamic conditions. In order to investigate the thermodynamic conditions of the stability zone of abiotic methane hydrate in marine serpentinization areas, we calculated the depth of the bottom boundaries of gas hydrate stability zone in three distinctive serpentinization areas, i.e. the Mariana forearc serpentinized mud volcanos, the Fram strait (an ultraslow- spreading ridge) and the Lost City (a slow spreading ridge). Our results show that the thermodynamic conditions are satisfied for forming the hydrate stability zone in the areas of Mariana forearc serpentinite mud volcanos and the ultraslow-spreading ridge at the Fram Strait. Calculation shows the depth of the bottom boundaries of gas hydrate stability zone is around 858~2515 mbsf at Mariana forearc mud volcano area and 153~232 mbsf at the Fram Strait. However, the temperature of vent fluids found at the Lost City is relative higher than needed for the formation of gas hydrate stability zone.

  • 加载中
  • [1] Johnson A H. Global resource potential of gas hydrate-a new calculation[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, Scotland, United Kingdom, 2011.

    Google Scholar

    [2] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. New York: CRC Press, 2008.

    Google Scholar

    [3] Sloan E D Jr. Clathrate Hydrates of Natural Gases, Revised and Expanded[M]. 2nd ed. New York: CRC Press, 1998.

    Google Scholar

    [4] Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. doi: 10.1098/rsta.2010.0065

    CrossRef Google Scholar

    [5] Kennett J P, Cannariato K G, Hendy I L, et al. The clathrate gun hypothesis[M]//Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. Washington, DC: American Geophysical Union, 2003, 54: 105-107.

    Google Scholar

    [6] Davie M K, Buffett B A. Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models [J]. Earth and Planetary Science Letters, 2003, 206(1-2): 51-63. doi: 10.1016/S0012-821X(02)01064-6

    CrossRef Google Scholar

    [7] 苏正, 陈多福. 海洋天然气水合物的类型及特征[J]. 大地构造与成矿学, 2006, 30(2):256-264 doi: 10.3969/j.issn.1001-1552.2006.02.016

    CrossRef Google Scholar

    SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments [J]. Geotectonica et Metallogenia, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016

    CrossRef Google Scholar

    [8] Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Detection[M]. Washington, D. C.: American Geophysical Union, 2001: 67-84.

    Google Scholar

    [9] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006

    CrossRef Google Scholar

    [10] Evans B W, Hattori K, Barronet A. Serpentinite: What, why, where [J]. Elements, 2013, 9(2): 99-106. doi: 10.2113/gselements.9.2.99

    CrossRef Google Scholar

    [11] Charlou J L, Fouquet Y, Bougault H, et al. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1998, 62(13): 2323-2333. doi: 10.1016/S0016-7037(98)00138-0

    CrossRef Google Scholar

    [12] McCollom M T. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa [J]. Journal of Geophysical Research: Planets, 1999, 104(E12): 30729-30742. doi: 10.1029/1999JE001126

    CrossRef Google Scholar

    [13] Proskurowski G, Lilley M D, Seewald S J, et al. Abiogenic hydrocarbon production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194

    CrossRef Google Scholar

    [14] Bradley A S, Summons R E. Multiple origins of methane at the Lost City Hydrothermal Field [J]. Earth and Planetary Science Letters, 2010, 297(1-2): 34-41. doi: 10.1016/j.jpgl.2010.05.034

    CrossRef Google Scholar

    [15] 汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩石化研究进展评述[J]. 地球科学进展, 2015, 25(6):605-616

    Google Scholar

    WANG Xiaomei, ZENG Zhigang, OUYANG Hegen, et al. Review of progress in serpentinization research of oceanic peridotites [J]. Advances in Earth Science, 2015, 25(6): 605-616.

    Google Scholar

    [16] 黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7):1901-1907

    Google Scholar

    HUANG Ruifang, SUN Weidong, DING Xing, et al. Formation of hydrogen gas and alkane during peridotite serpentinization [J]. Acta Petrologica Sinica, 2015, 31(7): 1901-1907.

    Google Scholar

    [17] McCollom T M, Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks [J]. Geochimica Et Cosmochimica Acta, 2009, 73(3): 856-875. doi: 10.1016/j.gca.2008.10.032

    CrossRef Google Scholar

    [18] Rajan A, Mienert J, Bünz S, et al. Potential serpentinization, degassing, and gas hydrate formation at a young (< 20 Ma) sedimented ocean crust of the Arctic Ocean ridge system [J]. Journal of Geophysical Research-Solid Earth, 2012, 117(B3): B03102.

    Google Scholar

    [19] Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates [J]. Geology, 2015, 43(5): 371-374. doi: 10.1130/G36440.1

    CrossRef Google Scholar

    [20] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556

    CrossRef Google Scholar

    [21] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3625-3645. doi: 10.1016/j.gca.2006.04.016

    CrossRef Google Scholar

    [22] Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life[M]//Carbon in Earth. Chantilly: Mineralogical Society of America, 2013, 75: 575-606.

    Google Scholar

    [23] Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the ocean drilling program: Initial Reports 125[R]. College Station, TX: Ocean Drilling Program, 1990.

    Google Scholar

    [24] 王先彬, 欧阳自远, 卓胜广, 等. 蛇纹石化作用、非生物成因有机化合物与深部生命[J]. 中国科学: 地球科学, 2014, 57(5):878-887 doi: 10.1007/s11430-014-4821-8

    CrossRef Google Scholar

    WANG Xianbin, OUYANG Ziyuan, ZHUO Shengguang, et al. Serpentinization, abiogenic organic compounds, and deep life [J]. Science China: Earth Sciences, 2014, 57(5): 878-887. doi: 10.1007/s11430-014-4821-8

    CrossRef Google Scholar

    [25] Dmitriev L V, Bazylev B A, Silantiev S A, et al. Hydrogen and methane formation with serpentization of mantle hyperbasite of the ocean and oil generation [J]. Russian Journal of Earth Sciences, 2000, 1(6): 511-519. doi: 10.2205/2000ES000030

    CrossRef Google Scholar

    [26] Lupton J, Butterfield D, Lilley M, et al. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08007.

    Google Scholar

    [27] Sun R, Duan Z H. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments [J]. Chemical Geology, 2007, 244(1-2): 248-262. doi: 10.1016/j.chemgeo.2007.06.021

    CrossRef Google Scholar

    [28] Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater [J]. Chemical Geology, 2005, 219(1-4): 37-52. doi: 10.1016/j.chemgeo.2005.02.008

    CrossRef Google Scholar

    [29] Dickens G R, Quinby-Hunt M S. Methane hydrate stability in seawater [J]. Geophysical Research Letters, 1994, 21(19): 2115-2118. doi: 10.1029/94GL01858

    CrossRef Google Scholar

    [30] Brown K M, Bangs N L, Froelich P N, et al. The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 471-483. doi: 10.1016/0012-821X(95)00243-6

    CrossRef Google Scholar

    [31] Fryer P, Wheat C G, Williams T, et al. Proceedings of the ocean internation drilling program: Initial Reports 366[R]. College Station, TX: Ocean Drilling Program, 2018.

    Google Scholar

    [32] Myhre, A M, Thiede J, Firth J V. Proceedings of the ocean internation drilling program: Initial Reports 151[R]. College Station, TX, 1995.

    Google Scholar

    [33] Früh-Green G L, Orcutt B N, Green S L, et al. Proceedings of the ocean drilling program: Initial Reports 357[R]. College Station, TX, 2017.

    Google Scholar

    [34] Fryer P. Serpentinite mud volcanism: observations, processes, and implications[M]//Annual Review of Marine Science. Palo Alto: Annual Reviews, 2012, 4: 345-373.

    Google Scholar

    [35] Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057

    CrossRef Google Scholar

    [36] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica Et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037

    CrossRef Google Scholar

    [37] Salisbury M H, Shinohara M, Richter C, et al. Proceedings of the ocean drilling program: Initial Reports 195[R]. College Station, TX: Ocean Drilling Program, 2002.

    Google Scholar

    [38] 丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):258-268

    Google Scholar

    DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-rock interaction in oceanic subduction zone: Serpentinzation [J]. Journal of Engineering Studies, 2016, 8(3): 258-268.

    Google Scholar

    [39] 张振国, 方念乔, 高莲凤, 等. 超慢速扩张洋脊: 海洋地学研究新领域[J]. 海洋地质动态, 2007, 23(4):17-20 doi: 10.3969/j.issn.1009-2722.2007.04.005

    CrossRef Google Scholar

    ZHANG Zhenguo, FANG Nianqiao, GAO Lianfeng, et al. The ultraslow-spreading ridge: new field of the marine geology [J]. Marine Geology Letters, 2007, 23(4): 17-20. doi: 10.3969/j.issn.1009-2722.2007.04.005

    CrossRef Google Scholar

    [40] Snow J E, Edmonds H N. Ultraslow-spreading ridges: rapid paradigm changes [J]. Oceanography, 2007, 20(1): 90-101. doi: 10.5670/oceanog.2007.83

    CrossRef Google Scholar

    [41] Klenke M, Schenke H W. A new bathymetric model for the central Fram Strait [J]. Marine Geophysical Researches, 2002, 23(4): 367-378. doi: 10.1023/A:1025764206736

    CrossRef Google Scholar

    [42] Westvig I M. Structural and stratigraphic setting and fluid flow features of the svyatogor ridge, a sediment drift south of the Molloy transform[D]. Master Dissertation of UiT The Arctic University of Norway, 2015.

    Google Scholar

    [43] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N [J]. Nature, 2001, 412(6843): 145-149. doi: 10.1038/35084000

    CrossRef Google Scholar

    [44] Früh-Green G L, Kelley D, Bernasconi M S, et al. 30, 000 years of hydrothermal activity at the Lost City vent field [J]. Science, 2003, 301(5632): 495-498. doi: 10.1126/science.1085582

    CrossRef Google Scholar

    [45] Lowell R P, Rona P A. Seafloor hydrothermal systems driven by the serpentinization of peridotite [J]. Geophysical Research Letters, 2002, 29(11): 26-1-26-4.

    Google Scholar

    [46] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.

    Google Scholar

    [47] 张继, 李海平, 陈青, 等. 俯冲带研究进展与问题[J]. 地质调查与研究, 2015, 38(1):18-27, 34 doi: 10.3969/j.issn.1672-4135.2015.01.003

    CrossRef Google Scholar

    ZHANG Ji, LI Haiping, CHEN Qing, et al. Review on the research of subduction zone [J]. Geological Survey and Research, 2015, 38(1): 18-27, 34. doi: 10.3969/j.issn.1672-4135.2015.01.003

    CrossRef Google Scholar

    [48] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-681 doi: 10.1007/s11430-015-5258-4

    CrossRef Google Scholar

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-681. doi: 10.1007/s11430-015-5258-4

    CrossRef Google Scholar

    [49] 臧绍先, 宁杰远. 西太平洋俯冲带的研究及其动力学意义[J]. 地球物理学报, 1996, 39(2):188-202 doi: 10.3321/j.issn:0001-5733.1996.02.006

    CrossRef Google Scholar

    ZANG Shaoxian, NING Jieyuan. Study on the subduction zone in western Pacific and its implication for the geodynamics [J]. Acta Geophysica Sinica, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006

    CrossRef Google Scholar

    [50] Allen D E, Seyfried W E Jr. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1347-1354. doi: 10.1016/j.gca.2003.09.003

    CrossRef Google Scholar

    [51] Proskurowski G, Liley M D, Kelley D S, et al. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer [J]. Chemical Geology, 2006, 229(4): 331-343. doi: 10.1016/j.chemgeo.2005.11.005

    CrossRef Google Scholar

    [52] Wei M, Sandwell D. Estimates of heat flow from Cenozoic seafloor using global depth and age data [J]. Tectonophysics, 2006, 417(3-4): 325-335. doi: 10.1016/j.tecto.2006.02.004

    CrossRef Google Scholar

    [53] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach [J]. Energies, 2012, 5(7): 2449-2498. doi: 10.3390/en5072449

    CrossRef Google Scholar

    [54] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002

    CrossRef Google Scholar

    [55] Xu W Y. Modeling dynamic marine gas hydrate systems [J]. American Mineralogist, 2004, 89(8-9): 1271-1279. doi: 10.2138/am-2004-8-916

    CrossRef Google Scholar

    [56] Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics [J]. Terrestrial Atmospheric & Oceanic Sciences, 2006, 17(4): 723-737.

    Google Scholar

    [57] Cao Y C, Chen D F, Cathles L M. A kinetic model for the methane hydrate precipitated from venting gas at cold seep sites at Hydrate Ridge, Cascadia margin, Oregon [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(9): 4669-4681. doi: 10.1002/jgrb.50351

    CrossRef Google Scholar

    [58] Borowski W S, Paull C K, Ussler W Ⅲ. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    CrossRef Google Scholar

    [59] Bhatnagar G, Chatterjee S, Chapman W G, et al. Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03003.

    Google Scholar

    [60] Tréhu A M, Bohrmann G, Rack F R, et al. Proceedings of the ocean drilling program: Initial Reports 204[R]. College Station, TX: Ocean Drilling Program, 2003.

    Google Scholar

    [61] Riedel M, Collett T S, Malone M J, et al. Proceedings of the integrated ocean drilling: Initial Reports 311[R]. College Station, TX: Ocean Drilling Program, 2006.

    Google Scholar

    [62] Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge) [J]. Chemical Geology, 1999, 153(1-4): 53-79. doi: 10.1016/S0009-2541(98)00152-1

    CrossRef Google Scholar

    [63] 曹运诚, 陈多福. 海洋天然气水合物发育顶界的模拟计算[J]. 地球物理学报, 2014, 57(2):618-627 doi: 10.6038/cjg20140225

    CrossRef Google Scholar

    CAO Yuncheng, CHEN Duofu. Modeling calculation of top occurrence of marine gas hydrates [J]. Chinese Journal of Geophysics, 2014, 57(2): 618-627. doi: 10.6038/cjg20140225

    CrossRef Google Scholar

    [64] Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204 [J]. Earth and Planetary Science Letters, 2004, 222(3-4): 845-862. doi: 10.1016/j.jpgl.2004.03.035

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1851) PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint