Citation: | CHEN Tianyu, CAI Pinghe, LI Weiqiang, YANG Tao, LING Hongfei, JI Junfeng. The sources of dissolved iron in the global ocean and isotopic tracing[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 46-57. doi: 10.16562/j.cnki.0256-1492.2019070501 |
Iron is an essential trace element to oceanic primary productivity, which may influence the structure of marine biological community, ecological function, and carbon cycle. It is therefore of great importance to understand the sources and supply of dissolved Fe to the ocean and its responses to the global climate change. Early studies often emphasize dust input as the mechanism to maintain oceanic Fe cycling. In recent years, with the increase in Fe data, especially along with the launch of GEOTRACES program, the important role of dissolved Fe released from continental shelf sediments and hydrothermal activities has been highlighted. Nevertheless, there still remain considerable uncertainties regarding the contribution of Fe to the open ocean from different sources. Our review begun with characterizing the chemical speciation of dissolved Fe, especially of organic ligand in oceanic Fe cycling, and then presented flux estimation of different Fe sources as well as the debates regarding the oceanic Fe fertilization during the time of Quaternary. Iron isotopes provide a new tool for studying the evolution of Fe sources. We have discussed the Fe isotope signatures of different sources, and proposed that the combination of isotopes and speciation analysis of sedimentary reactive Fe might provide a new perspective in understanding the mechanism of Fe export and transport from continental shelf, hydrothermal activity, and dust in the past.
[1] | Tagliabue A, Bowie A R, Boyd P W, et al. The integral role of iron in ocean biogeochemistry [J]. Nature, 2017, 543(7643): 51-59. doi: 10.1038/nature21058 |
[2] | Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682. doi: 10.1038/ngeo964 |
[3] | Raven J A, Evans M C W, Korb R E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms [J]. Photosynthesis Research, 1999, 60(2-3): 111-150. |
[4] | Liu X W, Millero F J. The solubility of iron in seawater [J]. Marine Chemistry, 2002, 77(1): 43-54. doi: 10.1016/S0304-4203(01)00074-3 |
[5] | Moore J K, Braucher O. Sedimentary and mineral dust sources of dissolved iron to the world ocean [J]. Biogeosciences, 2008, 5(3): 631-656. doi: 10.5194/bg-5-631-2008 |
[6] | Tagliabue A, Mtshali T, Aumont O, et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean [J]. Biogeosciences, 2012, 9(6): 2333-2349. doi: 10.5194/bg-9-2333-2012 |
[7] | Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J]. Nature, 1988, 331(6154): 341-343. doi: 10.1038/331341a0 |
[8] | Martin J H, Fitzwater S E, Gordon R M. Iron deficiency limits phytoplankton growth in Antarctic waters [J]. Global Biogeochemical Cycles, 1990, 4(1): 5-12. doi: 10.1029/GB004i001p00005 |
[9] | Martin J H, Fitzwater S E, Gordon R M. We still say iron deficiency limits phytoplankton growth in the Subarctic Pacific [J]. Journal of Geophysical Research: Oceans, 1991, 96(C11): 20699-20700. doi: 10.1029/91JC01935 |
[10] | De Baar H J W, Boyd P W, Coale K H, et al. Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment [J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): C09S16. |
[11] | Boyd P W, Jickells T, Law C S, et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions [J]. Science, 2007, 315(5812): 612-617. doi: 10.1126/science.1131669 |
[12] | Martin J H. Glacial-interglacial CO2 change: the iron hypothesis [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 1-13. |
[13] | Watson A J, Bakker D C E, Ridgwell A J, et al. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 [J]. Nature, 2000, 407(6805): 730-733. doi: 10.1038/35037561 |
[14] | Ingall E D, Bustin R M, Van Cappellen P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales [J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 303-316. doi: 10.1016/0016-7037(93)90433-W |
[15] | Van Cappellen P, Ingall E D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity [J]. Science, 1996, 271(5248): 493-496. doi: 10.1126/science.271.5248.493 |
[16] | Dale A W, Nickelsen L, Scholz F, et al. A revised global estimate of dissolved iron fluxes from marine sediments [J]. Global Biogeochemical Cycles, 2015, 29(5): 691-707. doi: 10.1002/2014GB005017 |
[17] | Elrod V A, Berelson W M, Coale K H, et al. The flux of iron from continental shelf sediments: a missing source for global budgets [J]. Geophysical Research Letters, 2004, 31(12): L12307. |
[18] | Severmann S, McManus J, Berelson W M, et al. The continental shelf benthic iron flux and its isotope composition [J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3984-4004. doi: 10.1016/j.gca.2010.04.022 |
[19] | Shi X M, Wei L, Hong Q Q, et al. Large benthic fluxes of dissolved iron in China coastal seas revealed by 224Ra/228Th disequilibria [J]. Geochimica et Cosmochimica Acta, 2019, 260: 49-61. doi: 10.1016/j.gca.2019.06.026 |
[20] | Fung I Y, Meyn S K, Tegen I, et al. Iron supply and demand in the upper ocean [J]. Global Biogeochemical Cycles, 2000, 14(1): 281-295. doi: 10.1029/1999GB900059 |
[21] | Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959 |
[22] | Sarthou G, Baker A R, Blain S, et al. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(10-11): 1339-1352. doi: 10.1016/S0967-0637(03)00126-2 |
[23] | Mahowald N M, Baker A R, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025. |
[24] | Yücel M, Gartman A, Chan C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean [J]. Nature Geoscience, 2011, 4(6): 367-371. doi: 10.1038/ngeo1148 |
[25] | Fitzsimmons J N, Boyle E A, Jenkins W J. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16654-16661. doi: 10.1073/pnas.1418778111 |
[26] | Bennett S A, Rouxel O, Schmidt K, et al. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5619-5634. doi: 10.1016/j.gca.2009.06.027 |
[27] | Wu J F, Wells M L, Rember R. Dissolved iron anomaly in the deep tropical-subtropical Pacific: evidence for long-range transport of hydrothermal iron [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 460-468. doi: 10.1016/j.gca.2010.10.024 |
[28] | Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577 |
[29] | Saito M A, Noble A E, Tagliabue A, et al. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source [J]. Nature Geoscience, 2013, 6(9): 775-779. doi: 10.1038/ngeo1893 |
[30] | Tagliabue A, Bopp L, Dutay J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory [J]. Nature Geoscience, 2010, 3(4): 252-256. doi: 10.1038/ngeo818 |
[31] | Luo C, Mahowald N, Bond T, et al. Combustion iron distribution and deposition [J]. Global Biogeochemical Cycles, 2008, 22(1): GB1012. |
[32] | Conway T M, Hamilton D S, Shelley R U, et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes [J]. Nature Communications, 2019, 10(1): 2628. doi: 10.1038/s41467-019-10457-w |
[33] | Johnson K S, Chavez F P, Friederich G E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton [J]. Nature, 1999, 398(6729): 697-700. doi: 10.1038/19511 |
[34] | Gledhill M, Buck K N. The organic complexation of iron in the marine environment: a review [J]. Frontiers in Microbiology, 2012, 3: 69. |
[35] | Von Der Heyden B P, Roychoudhury A N. A review of colloidal iron partitioning and distribution in the open ocean [J]. Marine Chemistry, 2015, 177: 9-19. doi: 10.1016/j.marchem.2015.05.010 |
[36] | Tagliabue A, Aumont O, DeAth R, et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? [J]. Global Biogeochemical Cycles, 2016, 30(2): 149-174. doi: 10.1002/2015GB005289 |
[37] | Fitzsimmons J N, Carrasco G G, Wu J F, et al. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 130-151. doi: 10.1016/j.dsr2.2014.11.014 |
[38] | Cullen J T, Bergquist B A, Moffett J W. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean [J]. Marine Chemistry, 2006, 98(2-4): 295-303. doi: 10.1016/j.marchem.2005.10.007 |
[39] | Fitzsimmons J N, John S G, Marsay C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange [J]. Nature Geoscience, 2017, 10(3): 195-201. doi: 10.1038/ngeo2900 |
[40] | Buck K N, Sedwick P N, Sohst B, et al. Organic complexation of iron in the eastern tropical South Pacific: results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16) [J]. Marine Chemistry, 2018, 201: 229-241. doi: 10.1016/j.marchem.2017.11.007 |
[41] | Rue E L, Bruland K W. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment [J]. Limnology and Oceanography, 1997, 42(5): 901-910. doi: 10.4319/lo.1997.42.5.0901 |
[42] | Völker C, Tagliabue A. Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model [J]. Marine Chemistry, 2015, 173: 67-77. doi: 10.1016/j.marchem.2014.11.008 |
[43] | Johnson M S, Meskhidze N. Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy [J]. Geoscientific Model Development, 2013, 6(4): 1137-1155. doi: 10.5194/gmd-6-1137-2013 |
[44] | Schroth A W, Crusius J, Sholkovitz E R, et al. Iron solubility driven by speciation in dust sources to the ocean [J]. Nature Geoscience, 2009, 2(5): 337-340. doi: 10.1038/ngeo501 |
[45] | Winckler G, Anderson R F, Jaccard S L, et al. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500 000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6119-6124. doi: 10.1073/pnas.1600616113 |
[46] | Tagliabue A, Sallee J B, Bowie A R, et al. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing [J]. Nature Geoscience, 2014, 7(4): 314-320. doi: 10.1038/ngeo2101 |
[47] | Buck K N, Bruland K W. The physicochemical speciation of dissolved iron in the Bering Sea, Alaska [J]. Limnology and Oceanography, 2007, 52(5): 1800-1808. doi: 10.4319/lo.2007.52.5.1800 |
[48] | Shaw T J, Gieskes J M, Jahnke R A. Early diagenesis in differing depositional environments: the response of transition metals in pore water [J]. Geochimica et Cosmochimica Acta, 1990, 54(5): 1233-1246. doi: 10.1016/0016-7037(90)90149-F |
[49] | Noffke A, Hensen C, Sommer S, et al. Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum zone [J]. Limnology and Oceanography, 2012, 57(3): 851-867. doi: 10.4319/lo.2012.57.3.0851 |
[50] | Cai P H, Shi X M, Moore W S, et al. 224Ra: 228Th disequilibrium in coastal sediments: implications for solute transfer across the sediment-water interface [J]. Geochimica et Cosmochimica Acta, 2014, 125: 68-84. doi: 10.1016/j.gca.2013.09.029 |
[51] | Cai P H, Shi X M, Hong Q Q, et al. Using 224Ra: 228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary [J]. Geochimica et Cosmochimica Acta, 2015, 170: 188-203. doi: 10.1016/j.gca.2015.08.015 |
[52] | Schlitzer R, Anderson R F, Dodas E M, et al. The GEOTRACES intermediate data product 2017 [J]. Chemical Geology, 2018, 493: 210-223. doi: 10.1016/j.chemgeo.2018.05.040 |
[53] | Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans [J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2765-2780. doi: 10.1016/j.gca.2005.12.027 |
[54] | Smith Jr K L, Robison B H, Helly J J, et al. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea [J]. Science, 2007, 317(5837): 478-482. doi: 10.1126/science.1142834 |
[55] | Zhang R F, John S G, Zhang J, et al. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: from rivers to estuary to ocean [J]. Earth and Planetary Science Letters, 2015, 424: 201-211. doi: 10.1016/j.jpgl.2015.05.031 |
[56] | Von Damm K L, Edmond J M, Grant B, et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise [J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2197-2220. doi: 10.1016/0016-7037(85)90222-4 |
[57] | Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids [J]. Chemical Geology, 2002, 184(1-2): 37-48. doi: 10.1016/S0009-2541(01)00351-5 |
[58] | Statham P J, German C R, Connelly D P. Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean [J]. Earth and Planetary Science Letters, 2005, 236(3-4): 588-596. doi: 10.1016/j.jpgl.2005.03.008 |
[59] | Rudnicki M D, Elderfield H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 2939-2957. doi: 10.1016/0016-7037(93)90285-5 |
[60] | Li M, Toner B M, Baker B J, et al. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents [J]. Nature Communications, 2014, 5: 3192. doi: 10.1038/ncomms4192 |
[61] | Toner B M, Fakra S C, Manganini S J, et al. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume [J]. Nature Geoscience, 2009, 2(3): 197-201. doi: 10.1038/ngeo433 |
[62] | 王建强, 李小虎, 毕冬伟, 等. 全球海水剖面Fe同位素组成的不均一性及其影响因素[J]. 地球科学, 2017, 42(9):1519-1530 WANG Jianqiang, LI Xiaohu, BI Dongwei, et al. Fe isotopic composition heterogeneity of seawater profiles and its influence factors [J]. Earth Science, 2017, 42(9): 1519-1530. |
[63] | Brantley S L, Liermann L J, Guynn R L, et al. Fe isotopic fractionation during mineral dissolution with and without bacteria [J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3189-3204. doi: 10.1016/j.gca.2004.01.023 |
[64] | Wiederhold J G, Kraemer S M, Teutsch N, et al. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite [J]. Environmental Science & Technology, 2006, 40(12): 3787-3793. |
[65] | Dideriksen K, Baker J A, Stipp S L S. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B [J]. Earth and Planetary Science Letters, 2008, 269(1-2): 280-290. doi: 10.1016/j.jpgl.2008.02.022 |
[66] | Conway T M, John S G. Quantification of dissolved iron sources to the North Atlantic Ocean [J]. Nature, 2014, 511(7508): 212-215. doi: 10.1038/nature13482 |
[67] | Fantle M S, DePaolo D J. Iron isotopic fractionation during continental weathering [J]. Earth and Planetary Science Letters, 2004, 228(3-4): 547-562. doi: 10.1016/j.jpgl.2004.10.013 |
[68] | John S G, Helgoe J, Townsend E, et al. Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific [J]. Marine Chemistry, 2018, 201: 66-76. doi: 10.1016/j.marchem.2017.06.003 |
[69] | Henkel S, Kasten S, Hartmann J F, et al. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island [J]. Geochimica et Cosmochimica Acta, 2018, 237: 320-338. doi: 10.1016/j.gca.2018.06.042 |
[70] | Staubwasser M, Von Blanckenburg F, Schoenberg R. Iron isotopes in the early marine diagenetic iron cycle [J]. Geology, 2006, 34(8): 629-632. doi: 10.1130/G22647.1 |
[71] | Homoky W B, John S G, Conway T M, et al. Distinct iron isotopic signatures and supply from marine sediment dissolution [J]. Nature Communications, 2013, 4: 2143. doi: 10.1038/ncomms3143 |
[72] | Radic A, Lacan F, Murray J W. Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle [J]. Earth and Planetary Science Letters, 2011, 306(1-2): 1-10. doi: 10.1016/j.jpgl.2011.03.015 |
[73] | Lough A J M, Klar J K, Homoky W B, et al. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes [J]. Geochimica et Cosmochimica Acta, 2017, 202: 1-20. doi: 10.1016/j.gca.2016.12.022 |
[74] | Nasemann P, Gault-Ringold M, Stirling C H, et al. Processes affecting the isotopic composition of dissolved iron in hydrothermal plumes: a case study from the Vanuatu back-arc [J]. Chemical Geology, 2018, 476: 70-84. doi: 10.1016/j.chemgeo.2017.11.005 |
[75] | Rouxel O, Toner B M, Manganini S J, et al. Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N [J]. Chemical Geology, 2016, 441: 212-234. doi: 10.1016/j.chemgeo.2016.08.027 |
[76] | Abadie C, Lacan F, Radic A, et al. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 858-863. doi: 10.1073/pnas.1603107114 |
[77] | John S G, Mendez J, Moffett J, et al. The flux of iron and iron isotopes from San Pedro Basin sediments [J]. Geochimica et Cosmochimica Acta, 2012, 93: 14-29. doi: 10.1016/j.gca.2012.06.003 |
[78] | Wu J F, Boyle E, Sunda W, et al. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific [J]. Science, 2001, 293(5531): 847-849. doi: 10.1126/science.1059251 |
[79] | Marsay C M, Lam P J, Heller M I, et al. Distribution and isotopic signature of ligand-leachable particulate iron along the GEOTRACES GP16 East Pacific Zonal Transect [J]. Marine Chemistry, 2018, 201: 198-211. doi: 10.1016/j.marchem.2017.07.003 |
[80] | Horner T J, Williams H M, Hein J R, et al. Persistence of deeply sourced iron in the Pacific Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(5): 1292-1297. doi: 10.1073/pnas.1420188112 |
[81] | Lund D C, Asimow P D, Farley K A, et al. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations [J]. Science, 2016, 351(6272): 478-482. doi: 10.1126/science.aad4296 |
[82] | Costa K M, McManus J F, Middleton J L, et al. Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles [J]. Earth and Planetary Science Letters, 2017, 479: 120-132. doi: 10.1016/j.jpgl.2017.09.006 |
[83] | Hasenclever J, Knorr G, Rupke L H, et al. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing [J]. Nature Communications, 2017, 8: 15867. doi: 10.1038/ncomms15867 |
[84] | Crowley J W, Katz R F, Huybers P, et al. Glacial cycles drive variations in the production of oceanic crust [J]. Science, 2015, 347(6227): 1237-1240. doi: 10.1126/science.1261508 |
[85] | Lamy F, Gersonde R, Winckler G, et al. Increased dust deposition in the Pacific southern ocean during glacial periods [J]. Science, 2014, 343(6169): 403-407. doi: 10.1126/science.1245424 |
[86] | Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310 |
[87] | Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean [J]. Nature Geoscience, 2012, 5(4): 270-274. doi: 10.1038/ngeo1422 |
[88] | Loveley M R, Marcantonio F, Wisler M M, et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100 000 years [J]. Nature Geoscience, 2017, 10(10): 760-764. doi: 10.1038/ngeo3024 |
[89] | Costa K M, McManus J F, Anderson R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age [J]. Nature, 2016, 529(7587): 519-522. doi: 10.1038/nature16453 |
[90] | Ardyna M, Lacour L, Sergi S, et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean [J]. Nature Communications, 2019, 10(1): 2451. doi: 10.1038/s41467-019-09973-6 |
[91] | Scholz F, Severmann S, McManus J, et al. Beyond the Black Sea paradigm: the sedimentary fingerprint of an open-marine iron shuttle [J]. Geochimica et Cosmochimica Acta, 2014, 127: 368-380. doi: 10.1016/j.gca.2013.11.041 |
[92] | Zhu X K, O'Nions R K, Guo Y L, et al. Secular variation of iron isotopes in North Atlantic Deep Water [J]. Science, 2000, 287(5460): 2000-2002. doi: 10.1126/science.287.5460.2000 |
[93] | Chu N C, Johnson C M, Beard B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time [J]. Earth and Planetary Science Letters, 2006, 245(1-2): 202-217. doi: 10.1016/j.jpgl.2006.02.043 |
[94] | Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957 |
[95] | Lam P J, Bishop J K B. The continental margin is a key source of iron to the HNLC North Pacific Ocean [J]. Geophysical Research Letters, 2008, 35(7): L07608. |
[96] | Slemons L O, Murray J W, Resing J, et al. Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent [J]. Global Biogeochemical Cycles, 2010, 24(3): GB3024. |
[97] | Rose A L, Waite T D. Kinetics of hydrolysis and precipitation of ferric iron in seawater [J]. Environmental Science & Technology, 2003, 37(17): 3897-3903. |
[98] | Henkel S, Kasten S, Poulton S W, et al. Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments [J]. Chemical Geology, 2016, 421: 93-102. doi: 10.1016/j.chemgeo.2015.12.003 |
[99] | Revels B N, Zhang R F, Adkins J F, et al. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes [J]. Geochimica et Cosmochimica Acta, 2015, 166: 92-104. doi: 10.1016/j.gca.2015.05.034 |
Illustration of iron classification in seawater
The distribution of dissolved Fe in surface water of the global ocean (0~50 m)[6, 52]
Dissolved Fe and δ56Fe of the North Atlantic GA03 section (left)[66] and East Pacific GP16 section (right)[68]
Evolution of the detrital flux, biological productivity, and atmospheric CO2 concentrations[94] over the last 500 ka from the Southern Ocean sediment cores PS75/059-2 (Pacific sector)[85] and ODP-1090 (Atlantic sector)[86]
Illustration of the biogeochemical cycle of Fe in the ocean with the Atlantic-Southern Ocean profile as an example (modified from [1])